
Word Processing with GNU/Linux

Part 1: Document Processors and Output Formats

Ben Pfaff <pfaffben@msu.edu>

8 Jan 2000

Contents

1 Introduction 1

2 Document processors 1
2.1 TEX 2

2.1.1 LATEX 2
2.1.2 Texinfo 2

2.2 nroff 3
2.3 SGML 3

2.3.1 HTML 3
2.3.2 Docbook 4
2.3.3 Linuxdoc 4
2.3.4 Debiandoc 4

3 Output formats 4
3.1 PostScript 4

3.1.1 Ghostscript 4
3.1.2 gv 5
3.1.3 psutils 5

3.2 PDF 5
3.2.1 xpdf 5

3.3 DVI 5
3.3.1 xdvi 5
3.3.2 dvips 5
3.3.3 dvihp 5

3.4 RTF 5
3.4.1 Pathetic Writer 5
3.4.2 Ted 5

3.5 HTML 6
3.6 Info 6

3.6.1 Emacs 6
3.6.2 Info 6

3.7 Plain text 6
3.7.1 Character sets 6
3.7.2 Overstrikes 6

3.8 Device-specific formats 6

4 Intermission 7

1 Introduction

If you’re accustomed to word processing in GUI envi-
ronments such as those provided by Microsoft Win-
dows, you will find the facilities provided by Unix-
like environments unfamiliar, even alien. But in fact,
GNU/Linux tools for word processing are just as pow-
erful, or more so, than their Windows equivalents.

The aim of this article is to provide an overview of
the free tools available under GNU/Linux for word
processing. No particular tool will be emphasized.
Instead, the purpose is to introduce the reader to the
concepts behind each of the most popular tools, and
to explain their respective strengths and weaknesses
in various tasks.

This is the first part of two in a series. Whether the
second part will be written depends on the reception
of this part, so stay tuned.

2 Document processors

In GNU/Linux, the most popular word processing
tools all fall into the category of “document proces-
sors.” These tools all take a file written in a special
document language as input, and output a processed
version of the document in one of several formats.

Document processor input files are typically writ-
ten using a text editor such as vi or Emacs. The
languages used to write the input files vary greatly
in style and complexity from one document proces-
sor to another. Some document languages (TEX,
nroff) are Turing complete, that is, they are com-
plete programming languages specialized for writing
documents, whereas others (SGML, nroff -man) are
intentionally circumscribed to ease the construction
of tools for translation.

Output formats also vary between document pro-
cessors. Some offer only a single output format, but
most tools these days offer a choice of at least a few

1

formats. Output formats are covered in more detail
later in this article.

The sections below discuss individual document
processors.

2.1 TEX

TEX is arguably the most important document pro-
cessor available today. Other than nroff (see below),
it is also the most popular.

Donald E. Knuth began designing TEX in 1978 in
response to the declining quality of typesetting in his
seminal textbook series, The Art of Computer Pro-
gramming. The language has evolved since, but its
design is now frozen, and no more changes will be
made. For additional information on TEX’s history,
see the Jargon File [1].

Besides a document processor, TEX includes a
complete font-generation system called METAFONT.
Fonts in METAFONT are parameterized, meaning
that their appearance can be modified based on a
number of user-controllable settings. For instance,
Knuth’s own Computer Modern typeface, used in this
article, has over 50 parameters. It is not normally
necessary to set all these parameters by hand, but the
available versatility can occasionally come in handy.

Distinctive features of TEX include its macro-based
programming environment and its strong support for
typesetting equations.

Input files to TEX typically have a .tex extension.
TEX writes output files in its own .dvi format. Mod-
ern versions can also output PDF files. Use the tex
program to translate TEX to DVI, or pdftex to trans-
late to PDF.

There is an enormous amount of third-party sup-
port for TEX. As a result, TEX “distributions,” which
are to TEX as GNU/Linux distributions are to the
Linux kernel, have been developed. For GNU/Linux
systems, the most popular of these is currently teTEX,
which includes a large number of useful TEX “pack-
ages.”

It is possible to use raw TEX code to produce doc-
uments, but most users use a TEX document prepa-
ration system. By simplifying and specializing TEX,
such systems allow the user to worry less about type-
setting and more about writing. These systems ex-
ist for general-purpose typesetting and for specialized
needs, such as the styles used by particular maga-
zines or journals. The most commonly encountered
TEX document preparation systems are LATEX and
Texinfo, discussed in more detail below.

There is little documentation for plain TEX on the
net. Knuth’s TEXbook[2] is the authoritative guide.

2.1.1 LATEX

LATEX is a system designed for writing technical doc-
uments, including articles, reports, and books. It
is also useful for writing less formal documents such
as letters and even the occasional slide presentation.
This article was written using LATEX.

Some of the features of LATEX, in addition to those
provided by TEX itself, include strong support for fig-
ures and tables, tables of contents, indexes, graphics,
and bibliographies. Due to its popularity, there are
numerous extension packages available for use with
LATEX: if LATEX doesn’t support what you’re trying
to do directly, it is probably possible to find a package
to help you do it.

LATEX is squarely aimed at paper publishing. It
provides little support for online publishing in HTML
format, although it is easy to produce PDF files.
Add-ons for web publishing are available, but their
output often needs to be edited by hand to provide
the same quality as a tool designed for HTML output.

LATEX input files typically have .tex extensions.
Unfortunately, this is the same as plain TEX. They
can be distinguished from plain TEX by their first
line, which typically contains a \documentclass or
(old-style) \documentstyle directive. Use latex to
translate LATEX to DVI, or pdflatex to translate to
PDF.

Basic documentation for LATEX is included with the
system, but the most authoritative guide to using
LATEX (besides the source code, of course!) is the
book LATEX: A Document Preparation System[3] by
LATEX’s author.

2.1.2 Texinfo

Texinfo is the GNU Project’s documentation system.
Its goals are different from LATEX’s. Whereas LATEX is
designed for producing paper documents such as ar-
ticles and books, Texinfo is designed to provide both
online and paper documentation for GNU software.

Texinfo documents are designed for easy parsing
by software programs besides TEX itself. Specifi-
cally, the Free Software Foundation supplies a pro-
gram called makeinfo for translating Texinfo docu-
ments to Info format. In turn, Info format is designed
for online viewing with an Info viewer (see 3.6 below).

Tools also exist to translate Texinfo to HTML. The

2

best of these is currently texi2html, but later ver-
sions of makeinfo also support HTML output.

Texinfo input files have .texinfo, .texi, or .txi
extensions. They can be identified by their first line,
typically \input texinfo, or by the large number of
@-signs scattered around their contents. tex is used
to translate Texinfo to DVI, or pdftex for translation
to PDF.

Full documentation for Texinfo is included within
its distribution.

2.2 nroff

nroff is the oldest document processor still in com-
mon use in GNU/Linux. It was originally written in
the mid-1970s in PDP-11 assembler by Joseph Os-
sanna. For additional history, see the Jargon File[1].
nroff is used under GNU/Linux and other Unix-

like systems as the basic system documentation tool,
used for formatting manpages. The documentation
for some important GNU/Linux programs, among
them XFree86, is also written using nroff.

Strictly speaking, nroff refers to a particular pro-
gram that reads a document language and produces
output in a plain text format, useful for online view-
ing with a text viewer such as more or less. Sim-
ilarly, troff is a program that reads the same doc-
ument language and produces a device-independent
output format designed for easy translation into
printer-specific formats.

The GNU project’s nroff implementation, called
groff, is more versatile than older versions. It can
produce output in several formats: PostScript, TEX
DVI, plain text, HP PCL (supported by HP LaserJet
printers among others), HTML, and on-screen pre-
views for X.

Analogous to TEX’s document preparation sys-
tems, nroff has macro packages for different pur-
poses. These are referred to by the command line
option passed to nroff in order to select them, so on
a typical system one would find -man for manpages,
-ms for “manuscripts,” and so on.

Document files for nroff typically end in an exten-
sion that is a single digit, indicating the Unix manual
section that it should be installed in. nroff docu-
ments are also seen with .nroff and .troff, or ex-
tensions based on the macro package used. nroff
files can also be identified based by noticing the large
number of periods in the first column in a typical
document file.
nroff is poorly documented. However, this may

be okay, since it has few new users now that TEX has
achieved wide acceptance. Except for a few diehard
users, little new documentation is being written using
nroff. The except is manpages for new programs,
which fortunately use a small subset of nroff syntax,
again to ease parsing by other programs.

Several preprocessors are included with nroff.
These preprocessors take nroff source and pass
through most of it unchanged. They recognize special
directives and translate them into nroff commands.
Common preprocessors include eqn, for typesetting
equations; tbl, for tables; pic, for drawing pictures;
soelim, for handling include files; and refer, for bib-
liographic citations.

2.3 SGML

SGML, the Standard Generalized Markup Language,
and closely related XML, the Extensible Markup
Language, are the fastest-growing documentation for-
mat in the GNU/Linux world. SGML and XML
(hereafter, simply “SGML”) are both formats de-
signed to be easily parseable by programs.

SGML is not a document language in itself. In-
stead, it describes a standard format for specify-
ing document languages, called a document type
definition, or DTD. These document languages are
sometimes called SGML applications. In contrast,
individual documents are written against particular
DTDs.

Because of the existence of these DTDs, programs
can be written to deal with any SGML application,
not just particular DTDs. For instance, several tools
exist for validating SGML documents against their
DTDs and analyzing their structure. (However, tools
for translation of SGML into other formats must be
customized for the particular DTD in use.)

SGML document files typically have .sgml exten-
sions or extensions based on the name of their associ-
ated DTD. SGML DTDs can be identified based the
first line of the SGML file, starting with <!DOCTYPE.
In addition, SGML files contain lots of < and > char-
acters.

Some popular SGML applications are described in
more detail in the sections below.

2.3.1 HTML

The various versions of HTML are by far the most
popular SGML application. However, HTML is too
primitive a format for use in general word proc-

3

cessing. For instance, it lacks direct support for
footnotes, indexes, figures, mathematical typesetting,
columns of text, hyphenation, tables of content, bib-
liographies, and many other features expected of a
serious word processing tool. As a result, HTML is
rarely used directly for word processing. Instead, it is
used as an output format of other tools better suited
for word processing.

2.3.2 Docbook

Docbook is an SGML DTD for technical documen-
tation. It provides a feature set reminiscent of Tex-
info, which is unsurprising since their purposes are
the same.

An increasing number of programs provide their
documentation in Docbook format. Tools exist for
converting Docbook documents into LATEX, HTML,
PostScript, nroff, and plain text format, possibly
others as well.

2.3.3 Linuxdoc

Linuxdoc is the SGML DTD used by the Linux Docu-
mentation Project for writing Linux documentation.
It is also used by other projects and organizations.
Linuxdoc is a significantly simpler format than Doc-
book.

Tools exist to convert Linuxdoc documents into at
least LATEX, HTML, Texinfo, LyX, RTF, and plain
text formats.

2.3.4 Debiandoc

Debiandoc is an SGML DTD used by some Debian
projects for writing Debian manuals. Debiandoc is a
format even simpler than Linuxdoc.

Tools exist to convert Debiandoc documents into
at least LATEX, HTML, Texinfo, plain text, and text
with overstrikes (see section 3.7 below for explana-
tion).

3 Output formats

So you have a carefully written document in whatever
document language you ended up choosing. You’ve
run it through your document processor, and it pro-
cessed cleanly. Now you have. . . some output format.
Exciting, huh?

Oh, you wanted to do something with your output?
What you can do with the output of your document

processor depends on what format the output ended
up in. Let’s take a look at the most common output
formats:

3.1 PostScript

PostScript is a programming language designed and
largely controlled by Adobe Systems. It happens
to be particularly good at putting marks on paper.
PostScript is understood directly by high-end laser
and inkjet printers, among others. Implementations
also exist as software products.

There are three main varieties of PostScript: Level
1, Level 2, and Level 3. Level 1 is found in very old
printers. Level 2 is the current standard in printer
and software products. Level 3 is the newly anointed
successor to Level 2, but due to Adobe’s increasingly
proprietary attitude toward PostScript, it is unlikely
to ever achieve the market penetration of Level 2.

Products that support one level of PostScript can
handle documents designed for lower levels, but not
those which use features from higher levels. As a
result, PostScript Level 1 documents are the most
generic and can print on any PostScript printer.

PostScript files typically begin with a line of the
form %!PS-Adobe-x.y, where x and y are version
numbers.

A subtype of PostScript document is Encapsulated
PostScript, or EPS. EPS files are designed specifically
to be embedded in other documents. They are often
used as figures within larger documents. EPS figures
are typically vector-based so that they can be scaled
at high quality.

GNU/Linux has strong support for PostScript. A
few of the most useful utilities for PostScript are de-
scribed below.

3.1.1 Ghostscript

Ghostscript is a tool for executing PostScript code.
It can output the equivalent in a particular printer
language such as PCL, or display an on-screen pre-
view. Ghostscript also includes utilities for convert-
ing PostScript to PDF and vice versa, converting
PostScript files to plain text (with necessarily poor
quality), and for more esoteric purposes.

Sites with non-PostScript printers usually install
Ghostscript between the printer and the print queue
to allow PostScript files to be conveniently printed.

4

3.1.2 gv

‘gv’ is a handy X-based front-end to Ghostscript. It
makes previewing printouts much more pleasant than
using Ghostscript directly. Recommended.

‘gv’ can also display PDF files (see below).

3.1.3 psutils

PostScript documents which are structured accord-
ing to Adobe’s Document Structuring Conventions
(DSC) can be manipulated by programs. psutils
includes programs to extract particular pages from
PostScript files, rearrange pages, perform n-up and
booklet printing, combine and split files, and more.
It also has programs to fix up the PostScript output
of various programs which are known to be broken in
particular ways.

3.2 PDF

PDF is Adobe’s Portable Document Format. PDF is
closely related to PostScript, but it is optimized for
online viewing rather than for printing. Tools exist
to convert PostScript to PDF and vice versa; see the
previous section for details.

PDF has special features for online viewing: Tables
of contents can be displayed alongside document text;
hyperlinks can be made between related sections; and
PostScript figures can be replaced by GIFs or JPEGs
for faster display.

Unfortunately, even with these concessions to on-
line users, PDF is still a fundamentally flawed format
for online viewing. It forces the user to adapt to the
format of the printed work, instead of adapting the
work to the user’s environment.

PDF also has provisions for encrypted documents.
The usefulness of this feature in practice is question-
able.

3.2.1 xpdf

xpdf is a standalone viewer for PDF. In its interna-
tional viewer, it supports encrypted PDFs as well.
xpdf can convert PDFs to PostScript for printing.

Note that ‘gv’, described in the previous section,
also supports viewing and printing PDF files.

3.3 DVI

DVI is TEX’s standard output format, though some
other tools (such as GNU Groff) can also output it

now.
DVI is almost as good as PDF for online view-

ing. Its only shortcoming is the lack of hyperlinks,
but its great speed of display compared to PDF is
a big advantage. Pages displayed in xdvi refresh al-
most instantly, but it can take a few seconds in gv or
xpdf. DVI files are also smaller than the correspond-
ing PDF files, typically one-twentieth to one-third of
their size.

For online viewing, DVI is flawed in the same way
as PDF.

A few of the most commonly used DVI utilities are
described below.

3.3.1 xdvi

The xdvi program is used to view the contents of
DVI files under X. When used on a system that has
Ghostscript installed (see above), it can even display
PostScript figures included as part of TEX documents.

3.3.2 dvips

Converts DVI files to PostScript format for printing.

3.3.3 dvihp

Converts DVI files to HP’s PCL format for printing.

3.4 RTF

RTF is Rich Text Format, and it is somewhat of an
enigma. RTF was originally designed by Microsoft.
Despite this history, RTF files are in an ASCII for-
mat, not binary, and they are somewhat readable
with a text viewer. RTF appears to be an open, doc-
umented format.

RTF is primarily an output format. However, there
is support for reading and writing RTF files in at least
two products: Pathetic Writer and Ted.

3.4.1 Pathetic Writer

Pathetic Writer is part of the Siag Office suite, which
also contains a word processor and an animation
package. It is an X-based word processor with sup-
port for the usual things expected of such.

3.4.2 Ted

Ted is a standalone X-based editor designed for use
with RTF.

5

3.5 HTML

HTML format is a popular choice for online viewing,
since HTML browsers are available for every modern
computing platform. HTML has been chosen as the
documentation format for numerous projects, includ-
ing the Debian project.

HTML can be read and written by many programs,
but its utility as an input format for documentation
or general word processing is limited. For more in-
formation, see 2.3.1 above.

3.6 Info

Outside the GNU Project, Info is controversial. Some
say that it should be replaced by HTML. Its pro-
ponents argue that Info is more useful than HTML
for online viewing, since Info documents include a
full index and their viewers support full-text search
for entire documents, not just individual sections,
which are features lacking in HTML browsers. Info
also has next, previous, and ‘up’ pointers from each
page, which eases browsing considerably in many sit-
uations.

The most popular browsers for Info format are
Emacs and Info.

3.6.1 Emacs

All flavors of Emacs derived from GNU Emacs are
able to browse Info format.

3.6.2 Info

Info is the standalone GNU browser for Info format.
Its interface is strongly reminiscent of Emacs. As a
result, those who don’t like Emacs don’t like Info,
either.

3.7 Plain text

Plain text is just that. Plain text, in a file.
But there are sometimes-troublesome variations,

described below.

3.7.1 Character sets

The simplest, and most common, form of plain text
is in more-or-less universal 7-bit ASCII. This is suf-
ficient for English prose, but not for most other lan-
guages.

The next most common format is ISO Latin-1 for-
mat, an 8-bit format which specifies additional char-
acters for use in languages other than English. ISO
Latin-1 is sufficient for writing languages used in
western Europe as well as English.

Additional ‘national character sets’ exist as well,
but these are not as common.

Unicode is a character set which contains all the
characters in every human language. Unlike the other
character sets discussed here, which are 8-bit, Uni-
code characters are 16 bits in width. It is being slowly
adopted across computerdom, including GNU/Linux.
You may encounter it, especially in its UTF-8 coding
format, which is used for coding 16-bit characters in
contexts where 8-bit characters are expected.

GNU recode is useful for translating between these
character sets and others as well (such as various fla-
vors of EBCDIC). See its manual [4] for more details
about character sets.

3.7.2 Overstrikes

On a dot matrix printer, bold and underlined text can
be produced by overstriking using backspace charac-
ters. Some online text viewing tools such as less
can also interpret these backspace sequences, which
is how many Linux manpages are displayed on a text
console complete with colored text to represent bold
and underlines.

The col, colcrt, and ul utilities are useful for
dealing with files that contain overstrikes.

3.8 Device-specific formats

There are many formats which are more-or-less spe-
cific to particular devices. There is often little tha

The most common of these is HP PCL (Printer
Control Language). Variants of PCL can be found on
many inkjet and laser printers, but incompatibilities
between implementations are common, so it is often
better to consider each of these printers as having a
different command set.

Another example is the Epson/IBM command set
for driving dot-matrix line printers. This command
set is also rather different between manufacturers and
even between particular models from one manufac-
turer.

More and more printers are now using completely
proprietary command sets. Most of this new breed
of printers are “dumb framebuffers”; that is, they
have little or no intelligence, simply spraying pixels

6

on paper where indicated. These have no internal
fonts or support for other drawing primitives.

Such printers are commonly known as “WinPrint-
ers” due to their proliferation under the Microsoft
Windows platform. However, they are not typi-
cally Windows specific1, although sometimes docu-
mentation on their command sets is not available.
Ghostscript (see section 3.1.1) supports a number of
these printers under GNU/Linux.

4 Intermission

In the next part we’ll discuss the use of graphics and
figures in document processors, how to construct your
own document processing tools, and how to tie it all
together. We’ll also take a brief look at how GUI-
based WYSIWYG tools can help to construct docu-
ments.

References

[1] Eric S. Raymond. The Jargon File. Online at
http://sagan.earthspace.net/jargon.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley
1988. ISBN 0-201-13448-9.

[3] Leslie Lamport. LATEX, A Document Preparation
System: User’s Guide and Reference Manual. 2nd
ed. Addison-Wesley 1994. ISBN 0-201-52983-1.

[4] François Pinard, et al. The GNU Recode Manual.
Current version 3.5 at time of this writing. Online
at ftp://ftp.gnu.org/pub/gnu/recode.

1Historically, there did exist a short-lived line of printers
which implemented the Windows GDI graphics-drawing API.

7

