[Pv4 Masquerading for the Hypothetical Geek

Ben Pfaff <pfaffben@msu.edu>

24 May 2000

Contents
1 Introduction 1
2 Planning 1
3 Basic server setup 3
3.1 Troubleshooting 3
4 Client setup 4
41 Linux 4
4.1.1 Troubleshooting 4
42 Windows 9z 4
4.2.1 Troubleshooting 5
5 Advanced server setup 5
5.1 Autodialing 5
5.2 Web and FTP caching 5
53 DHCP 5
5.4 Nameserver 7
5.5 NTP Server 8
6 Conclusion 8

1 Introduction

Hypothetically, if you're a geek, you have any num-
ber of computers just sitting around, and you have
enough random parts to build another half dozen or
so without video or disks. So, hypothetically, the
thing to do is to network them all together, just for
hack value, using a combination of old thinwire Eth-
ernet cards and a 386 with 6 NE2000s acting as a
bridge.

Remember, all this is hypothetical. 1 would never
do this. I am not a geek.

The only problem is that all these machines will
be wanting Internet access. What good is a com-
puter without Internet access, after all? So you call
up the hypothetical local DSL provider and order 18

hypothetical DSL lines and companion IP addresses,
or 25 to allow room for expansion.

Ahem! Not even your hypothetical geek can pay
for 25 hypothetical DSL lines, and anyway no DSL
provider exists out in the hypothetical boonies where
the hypothetical geek lives.

So, in reality, your hypothetical geek is stuck with a
56 kbps! modem on a single phone line. How can such
a geek make the best of this? The hypothetical geek
still wants all the machines to have Internet access.
He doesn’t want to put a modem in all 18 computers,
which would hypothetically result in the hypothetical
geek slitting his hypothetical wrists® on a jagged case
fragment anyhow.

The real answer to this hypothetical problem of con-
nectivity is masquerading, also known as network ad-
dress translation or NAT. Masquerading makes any
number of machines on a single network look like
a single host with a single network address. More
specifically, masquerading for TPv4® has been a fea-
ture of the Linux kernel since version 1.2.x for some
value z.

This article covers the basics of IP masquerading
under Linux 2.0.z and 2.2.z. For more information
on IP masquerading under Linux, please see David
Ranch’s excellent IP Masquerading HOWTO, avail-
able from your local Linux documentation site.

2 Planning

Figure 1 on page 2 shows the architecture of a typical
home network set up under IP masquerading. Notice
how all the machines in the network are ultimately
connected to the Internet through the server in the
lower right of the diagram. This is probably the way

LCurrent FCC regulations limit speed to 53 kbps. It’s only
your crappy phone lines that limit speed to 20 kbps.

2Down, not across.

3IPv4, or Internet Protocol version 4, is the version used
in real life. IPv6, the next version, is used only in pipe
dreams~W~Wexperimental settings.

[cre weww weww

Figure 1: Architecture of typical home network.

that you want to plan for your IP masquerading setup
to work.

You’ll need all of the following in order to set up
masquerading:

e A Linux-capable server computer with a network
card and an Internet connection. A 386 or 486
is fine for basic setups.

e One or more client computers with network
cards. These can run just about any operating
system.

e A hub to connect all the computers together.
e A range of IP addresses (see below).

o A geek, for debugging purposes. This can be
the most expensive part of the setup, but some
geeks can be bribed with interesting bits of old
hardware or discounts on new hardware.

You'’ll have to come up with the hardware and the
geek on your own. But selecting the IP address range

to use is easy. I recommend that you use the 16-bit
“Class B”-size address range at 192.168.x.y, which
is reserved specifically for private networks like the
one you're building. As long as you have fewer than
65,000 or so computers on your network?, this should
be plenty.

As a consequence, the examples below assume that
all of your computers have IP addresses of the form
192.168.0.2, where z is a number between 1 and
2545, Specifically, it is assumed that your server is
at 192.168.0.1.

Now that we're done with the formalities, plug ev-
erything together and proceed to the next section,
where we’ll set up basic masquerading on the server
and the clients.

4Around here, that reads “as long as you’re not Ed
Glowacki.”

5192.168.0.0 and 192.168.0.255 are reserved for the network
address and the broadcast address, respectively.

3 Basic server setup

The toughest setup for masquerading is on the server,
and even that isn’t very hard. Now, let’s a look at
how to actually do it.

Start by logging into your Linux 2.0.z or 2.2.z
server as root, the superuser. Then follow the simple
steps below. If you're going to use masquerading on
a regular basis, you should integrate these commands
into a system startup script in /etc/init.d, but the
first time through it might be more educational to
type them directly at a shell prompt.

1. Modern Linux kernels disable packet forwarding
by default. This means that incoming IP pack-
ets will never be passed on to other computers.
However, for masquerading we need to turn on
packet forwarding, using the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

2. If you use the most common type of PPP dialup
account, where you get a new IP address every
time you dial, you should turn on kernel support
for dynamic IP address hacking, too:

echo 1 > /proc/sys/net/ipv4/ip_dynaddr

3. (Optional.) By default, masqueraded connec-
tions that are idle for 15 minutes or longer “time
out” and expire. This timeout duration can be
adjusted; e.g., the following command sets the
expiration timer to 2 hours (7200 seconds):

(2.0) ipfwadm -M -s 7200 10 160
(2.2) /sbin/ipchains -M -S 7200 10 160

4. (Optional.) Some IP-based protocols need extra
kernel support for successful masquerading. You
can load modules to support these protocols. For
instance, to load the FTP masquerading module:

modprobe ip_masq_ftp

Besides FTP, masquerading modules exist for
CuSeeMe, IRC, Quake, RealAudio, and VDO-
Live, among others. Note that most protocols
do not require specific masquerading support.

5. Set default forwarding policy to “deny.” This is
very important; if omitted, then you allow any-
one on the Internet to tunnel through your net-
work, making it appear as if their network activ-
ity were originating from your own network.

(2.0) /sbin/ipfwadm -F -p deny
(2.2) /sbin/ipchains -P forward DENY

6. Turn on masquerading for your local network:

(2.0) /sbin/ipfwadm -F -a m
-S 192.168.0.0/255.255.255.0
-D 0.0.0.0/0.0.0.0

(2.2) /sbin/ipchains -A forward
-s 192.168.0.0/255.255.255.0
-j MASQ

In the commands above you should replace
192.168.0.0 and 255.255.255.0 by the actual
network address and netmask of your local net-
work. If you're using my recommended setup,
no changes are necessary.

That’s it! You should now have a functioning IP
masquerading setup. If not, refer to the following
section.

3.1 Troubleshooting

This is where you should contact your geek. But if
you want to try to debug it on your own, consider the
following points:

Does the kernel support masquerading? A lot
of distributions now come out-of-the-box with
kernel support for masquerading. But yours
might not. If you suspect that your kernel lacks
IP masquerading support, refer to the IP Mas-
querading HOWTO for information on what op-
tions need to be enabled when recompiling the
kernel.

Is the network card set up correctly? Can the
server can ping other hosts in the network and
that they can ping the server? If not, you've got
a problem.

Are you online? Nothing in these instructions will
make your server automatically auto-dial when a
web page is requested. (That’s explained later.)

Did you do the ritual sacrifice? Arachnae, god-
dess of networks, appreciates the sacrifice of
hardware, the newer the better.

4 Client setup

Once you've set up the server, it’s time to set up
the clients. This is pretty easy. I'll cover how to set
up Linux clients and Windows 9z clients. For more
exotic systems, follow your nose, or refer to the IP
Masquerading HOWTO.

4.1 Linux

Your distribution probably has some GUI method®
for setting up networking. These instructions assume
that you're not using that method. As a result, the
following should work with just about any Linux ker-
nel. It probably works, with little modification, under
many other Unix-like kernels, too. Again, you’ll want
to modify your startup scripts to do the following au-
tomatically.

1. Set the machine’s IP address, network address,
and netmask. For instance:

ifconfig ethO 192.168.0.2
netmask 255.255.255.0

2. Tell the machine how to get to the local network.
(Some newer kernels may set this up automati-

cally.)
route add -net 192.168.0.0 ethO

3. Instruct the machine that everything not on the
local network should go through the server (it
already knows how to get packets to the server,
since it’s on the local network; if it weren’t, you’d
have to tell it how), using it as a gateway:

route add default gw 192.168.0.1

4. If you don’t already have DNS set up, then cre-
ate /etc/resolv.conf with the content shown
below. Replace the values shown by your own
domain(s) and local DNS server(s):

search msu.edu debian.org gnu.org
nameserver 35.8.2.41 35.8.2.42

6«1t’s GUI-riffic!”

4.1.1 Troubleshooting

If it doesn’t work, you're doing something wrong.
Duh. Your geek will know what’s wrong. If he’s on
vacation, think about the following:

Can you see the server? Try using ping to test
your connectivity to the server.

Is ICMP masqueraded? ICMP, the protocol used
by ping, is only masqueraded by newer kernels.
So if you're trying to ping the Internet through
the server, it might not work. Try something
else, like a web browser.

route is not idempotent. If you run route a lot,
your routes will accumulate. You can view the
routing table with route or route -n. To clear
out the routing table, use route del. For more
information, see route(8).

4.2 Windows 9z

Open “Control Panel” under “Settings” on the Start
menu. Inside Control Panel, double-click on “Net-
work.” Within the main list box in the dialogue box
that appears, find “TCP/IP” associated with your
Ethernet card and double-click on it. Then make the
following selections from the listed tabs:

IP Address Specify the client’s IP address and net-
mask. For instance, you might use 192.168.0.2
and 255.255.255.0.

Gateway Add a single entry, the address of your
server. If you're following my recommendations,
this is 192.168.0.1.

DNS Configuration Select the “Enable DNS” set-
ting. Enter a host name in “Host”; the name
itself is not particularly important. Enter your
preferred domain name within “Domain.” Put
your DNS servers in “DNS Server Search Order”;
for instance, 35.8.2.41 and 35.8.2.42. Enter
any additional domains within “Domain Suffix
Search Order.”

Other Set as desired

You’ll probably need to reboot after making these
settings.

4.2.1 Troubleshooting

What do I look like, a Windows expert? “Fiddle with
it until it starts working” is my advice.

There’s probably no point in talking to your geek
about it. He doesn’t know, either.

5 Advanced server setup

If you've gone through what’s above, you now have
a working TP masquerading setup. Congratulations.
But there’s lots more that you can set up, with some
extra work. You might be interested in setting up
one or more of the following:

o Automatic dialing whenever Internet sites are
accessed.

e Web and FTP caching to accelerate surfing.
e A DHCP server to simplify client setup.

e A nameserver to speed DNS lookups and allow
naming client computers.

e An NTP client/server to synchronize machines’
clocks.

The following sections briefly cover each of these
possibilities.

5.1 Autodialing

Most of the time, what you really want to happen is
for the modem to dial when you’re using the Internet,
then hang up when you’re done. This is pretty easy to
do using diald, and that’s what I recommend that
you use. I'll assume that you can set up diald on
your own; it’s not that hard.

But sometimes that’s not what you want to do. For
instance, you might want to keep the connection up
permanently for a while, or you might want to prevent
the modem from dialing entirely if you're using the
line for other purposes. To conveniently allow for
that, you can set up a helpful CGI script on your
webserver.

A sample CGI script for this purpose is shown in
Figure 2 on page 6. You should install this script into
your web server directory (e.g., /var/www) and make
it available only to machines on the local network.

In addition, you need to add a line to diald’s con-
figuration file, of this form:

fifo /var/run/diald.fifo

The script has to be setuid to a user empowered to
write to the FIFO mentioned above. Sometimes this
has to be root, but you might be lucky enough that
dialout or similar will work, too, or you may be able
to adjust the ownership or permissions on the FIFO
created by diald.

5.2 Web and FTP caching

Web browsers such as Mozilla keep a cache of sites
recently visited by particular users from particular
workstations in order to speed up web browsing. A
web cache on a server keeps a cache of sites recently
visited by anyone who uses the cache. This can
significantly speed up web browsing over a limited-
bandwidth connection.

To implement web and FTP caching, you just have
to install and configure Squid on your server. This
is a pretty easy process, and there’s not much else to
say about it.

I don’t recommend using Squid on a machine with
less than 32 MB RAM, and more RAM is better.

5.3 DHCP

I'm a programmer, therefore I'm lazy. I don’t want
to spend my time assigning and maintaining IP ad-
dresses for 18 different machines. Especially not for a
laptop that often moves between networks. You prob-
ably don’t want to, either. This is why you’d want to
use DHCP for automatically assigning IP addresses.
With Debian GNU/Linux, you'll want the dhcp pack-
age for this purpose; other distributions may have
this DHCP server under a different name.

It’s actually pretty easy to set up DHCP, but fig-
uring out how to do it from the documentation can
be gross. So here’s a sample configuration file for our
sample network setup:

server-identifier server.quux.org;

subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.128 192.168.0.254;
option domain-name-servers 35.8.2.41;
option domain-name '"quux.org";
option routers 192.168.0.1;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.0.255;
default-lease-time 3600;
max-lease-time 86400;

#! /usr/bin/perl

use CGI;
$q = new CGI;

if ($q->param (’action’) eq ’up’) {

fifo_cmd (’unblock’);

fifo_cmd (Cup’);

fifo_cmd ($g->param (’keep’) 7 ’force’ : ’unforce’);
} elsif ($q->param (’action’) eq ’down’) {

fifo_cmd (’unforce’);

fifo_cmd (’down’);

fifo_cmd ($g->param (’keep’) 7 ’block’ : ’unblock’);

print $q->header(-expires=>’now’);

print $q->start_html(-title=>’Modem Control’);

print "<hl align=center>Modem Control</hi>\n";

print $gq->start_form ();

print "<table>\n";

print "<p><tr><td>action</td><td nowrap>bring the connection\n";
print $q->popup_menu (’action’, [’up’,’down’], ’up’);

print "</td><td>To dial the modem, select up, or\n";
print "to disconnect, select down.</td></tr><p>\n";
print "<p><tr><td>permanence</td><td nowrap>\n";

print $q->checkbox(-name=>’keep’, -label=>’Keep it that way.’);
print "</td><td>If you don’t check this box, then the normal\n";
print "semantics will be applied to the connection. That is,\n";

print "if you selected down above, the modem will dial when\n";
print "there is Internet activity; if you selected up,\n";

print "the modem will disconnect after idle time.\n";

print "Checking this box will disable that behavior: the connection\n";
print "will stay up or down, as appropriate, until you come back to\n";
print "this page and resubmit the form.";

print "</td></tr><p>\n";

print "</table>\n";

print $q->submit (’Submit’);

print "</p>\n";

print $q->end_form (), "\n";

print $q->end_html, "\n";

sub fifo_cmd {
my ($cmd) = @_;
open FIFQ, ">/var/run/diald.fifo";
print FIFO "$cmd\n";
close FIFO;

Figure 2: CGI script in Perl to allow for manual control of diald autodialer.
http://www.msu.edu/user/pfaffben/masq/diald.cgi.

Also available from

By default, the DHCP server will hand out IP ad-
dresses on a first-come, first-serve basis within the
range specified in the range directive above. You
can also specify that particular machines should get
fixed IP addresses, like this (be sure not to use an IP
address reserved for dynamic assignment above):

host gameOSbox {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address 192.168.0.5;

}

You can obtain the Ethernet address to specify on
hardware ethernet from the output of ifconfigon
the machine in question.

5.4 Nameserver

Up until now, you’ve had to refer to all of your client
computers by their IP addresses. If you have more
than just a few clients, you’ll want to give them names
instead. You can do this by setting up the BIND DNS
server (“nameserver”), on your server machine. This
also allows the server to cache DNS entries for the
entire network, speeding up network operations.

Setting up BIND separates the lusers from the
BOFHs. It is not easy. Fortunately, for your net-
work, you won’t need more than a simple setup,
which as usual I've sugar-coated. My suggested
BIND configuration file (typically /etc/named.conf
or /etc/bind/named.conf) is this:

options {
directory "/var/named";
forwarders {

35.8.2.41;
35.8.2.42;
};
query-source address * port 53;
};
zone "." {
type hint;
file "named.root";
};

zone "localhost" {
type master;
file "named.local";

};

zone "127.in-addr.arpa" {

type master;
file "named.rev-local'";

};

zone "quux.org" {
type master;
file "named.domain";

};

zone "0.168.192.in-addr.arpa" {
type master;
file "named.rev-domain";

};

You’ll want to change the list of forwarders to
show your ISP’s nameservers, or you can leave them
out entirely (but this will reduce performance). Note,
in the last declaration of the file, that the network
address for your local network quux.org is given in
reverse order.

If you only want to run BIND for its DNS caching
abilities, you can omit the last two zone entries
above. You’re done, at this point. Start BIND and
get outta here.

Otherwise, you're interested in serving out your
own domain. First choose a domain name. This
doesn’t have to be the name of a real domain and
in fact shouldn’t be. (If it is then you won’t be able
to access the corresponding real domain at all, by
name at least.)

Start by replacing quux.org by this domain name
above. Then you have to create two files. The first
of these is /var/named/named.domain, and it should
look something like this:

@ IN SOA ns.quux.org. root.quux.org. (

1 ;5 Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
259200) ; Minimum
IN NS server.quux.org.
server 1IN A 192.168.0.1
WWW IN CNAME server
ftp IN CNAME server
ns IN CNAME server
proxy 1IN CNAME server
clientl IN A 192.168.0.2
client2 IN A 192.168.0.3
client3 IN A 192.168.0.4

The first line introduces the “SOA” or “start of
authority” record that gives the name of the name-
server and the email address of the server adminis-
trator (root@quux.org) with ‘@’ replaced by ‘.’. The
second line is the file’s “serial number,” which should
be incremented whenever its contents are changed.

The body of the file lists associations between host-
names and IP addresses using “A” records. There
should be only one A record per host. It can also in-
clude hostname synonyms. There may be any num-
ber of these “CNAME” or “canonical name” records
for a given host.

If you are using DHCP then you might wish to
give unique names to all possible DHCP-assigned TP
addresses. You should probably use a script to do
this, unless you like typing in lots of repetitive data.

The second file you need to create is named
/var/named/named.rev-domain. It should look like
this:

@ IN SOA ns.quux.org. root.quux.org. (

1 ; Serial

10800 ; Refresh

1800 ; Retry

3600000 ; Expire

259200) ; Minimum

IN NS server.quux.org.

1 IN PTR server.quux.org.

2 IN PTR clientl.quux.org.
3 IN PTR client2.quux.org.
4 IN PTR client3.quux.org.

This file is the inverse of the first one. The first part
is identical in form and content to that in the first file.
The remainder of the file specifies how IP addresses
can be translated back into hostnames, with “PTR”
records that “point” from IP addresses to hostnames.
Every A record should have a corresponding PTR
record, and vice versa.

There’s a number of other possible DNS record
types, but the above should be plenty for your mas-
querading network. For more information on setting
up DNS and BIND, refer to the BIND documenta-
tion.

Once you have BIND set up, you can change the list
of DNS servers on the server and the clients to point
to your server. Notice that if you’re using DHCP for
your clients, all you have to do to make this change is
to update your DHCP server configuration and either
tell the clients to refresh from it or just wait for them

to time out. For things like this, DHCP can be a real
time- and headache-saver.

5.5 NTP Server

Sometimes it can be important to keep the clocks on
all your machines synchronized. The easiest way to
do this is to install ntpd, an NTP (Network Time
Protocol) client and server.

The traditional way to do this is to have the NTP
daemon running all the time. Unfortunately this
doesn’t work out too well for systems that aren’t per-
manently connected to the Internet like yours.

An alternative is to add a call to ntpdate to your
PPP startup script. The ntpdate program just re-
trieves, once, the current date and time from a remote
server and sets the system clock to correspond. Of
course, you still want to run the NTP server so that
the other machines on the network can read the date
from your server.

Local NTP time servers include MSU’s name-
servers 35.8.2.41 and 35.8.2.42, also known as
servl.cl.msu.edu and serv2.cl.msu.edu.

6 Conclusion

Hypothetically, now you know how to set up a mas-
queraded network under Linux. Go to it!

