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Abstract
Strictly limiting the lifetime (i.e. propagation and duration

of exposure) of sensitive data (e.g. passwords) is an impor-
tant and well accepted practice in secure software develop-
ment. Unfortunately, there are no current methods available
for easily analyzing data lifetime, and very little information
available on the quality of today’s software with respect to data
lifetime.

We describe a system we have developed for analyzing sen-
sitive data lifetime through whole system simulation called
TaintBochs. TaintBochs tracks sensitive data by “tainting” it
at the hardware level. Tainting information is then propagated
across operating system, language, and application bound-
aries, permitting analysis of sensitive data handling at a whole
system level.

We have used TaintBochs to analyze sensitive data handling
in several large, real world applications. Among these were
Mozilla, Apache, and Perl, which are used to process millions
of passwords, credit card numbers, etc. on a daily basis. Our
investigation reveals that these applications and the compo-
nents they rely upon take virtually no measures to limit the life-
time of sensitive data they handle, leaving passwords and other
sensitive data scattered throughout user and kernel memory.
We show how a few simple and practical changes can greatly
reduce sensitive data lifetime in these applications.

1 Introduction

Examining sensitive data lifetime can lend valuable
insight into the security of software systems. When
studying data lifetime we are concerned with two pri-
mary issues: how long a software component (e.g. oper-
ating system, library, application) keeps data it is pro-
cessing alive (i.e. in an accessible form in memory
or persistent storage) and where components propagate
data (e.g. buffers, log files, other components).

As data lifetime increases so does the likelihood of
exposure to an attacker. Exposure can occur by way
of an attacker gaining access to system memory or to
persistent storage (e.g. swap space) to which data has
leaked. Careless data handling also increases the risk
of data exposure via interaction with features such as
logging, command histories, session management, crash
dumps or crash reporting [6], interactive error reporting,
etc.

Unfortunately, even simple questions about data life-
time can be surprisingly difficult to answer in real sys-
tems. The same data is often handled by many different
components, including device drivers, operating system,
system libraries, programming language runtimes, ap-
plications, etc., in the course of a single transaction. This
limits the applicability of traditional static and dynamic
program analysis techniques, as they are typically lim-
ited in scope to a single program, often require program
source code, and generally cannot deal with more than
one implementation language.

To overcome these limitations we have developed
a tool based on whole-system simulation called Taint-
Bochs, which allows us to track the propagation of sen-
sitive data at hardware level, enabling us to examine
all places that sensitive data can reside. We examine
systems with TaintBochs by running the entire software
stack, including operating system, application code, etc.
inside a simulated environment. Every byte of system
memory, device state, and relevant processor state is
tagged with a taint-status flag. Data is “tainted” if it is
considered sensitive.

TaintBochs propagates taint flags whenever their cor-
responding values in hardware are involved in an opera-
tion. Thus, tainted data is tracked throughout the system
as it flows through kernel device drivers, user-level GUI
widgets, application buffers, etc. Tainting is introduced
when sensitive data enters the system, such as when a
password is read from the keyboard device, an applica-
tion reads a particular data set, etc.

We applied TaintBochs to analyzing the lifetime
of password information in a variety of large, real-
world applications, including Mozilla, Apache, Perl, and
Emacs on the Linux platform. Our analysis revealed that
these applications, the kernel, and the libraries that they
relied upon generally took no steps to reduce data life-
time. Buffers containing sensitive data were deallocated
without being cleared of their contents, leaving sensi-
tive data to sit on the heap indefinitely. Sensitive data
was left in cleartext in memory for indeterminate periods
without good reason, and unnecessary replication caused
excessive copies of password material to be scattered all
over the heap. In the case of Emacs our analysis also
uncovered an interaction between the keyboard history



mechanism and shell mode which caused passwords to
be placed into the keyboard history in the clear.

On a positive note our analysis revealed that sim-
ple modifications could yield significant improvements.
For example, adding a small amount of additional code
to clear buffers in the string class destructor in Mozilla
greatly reduced the amount of sensitive input form data
(e.g. CGI password data) in the heap without a notice-
able impact on either code complexity or performance.

Our exposition proceeds as follows. In section 2 we
present the motivation for our work, discussing why data
lifetime is important to security, why minimizing data
lifetime is challenging, and how whole system simula-
tion can help. Section 3 describes the design of Taint-
Bochs, its policy for propagating taint information and
the rationale behind it, its support for introducing and
logging taints, and our analysis framework. Section 4
describes our experiments on Mozilla, Apache, Perl, and
Emacs, analyzes the results, and describes a few sim-
ple changes we made to greatly reduced the quantity of
long-lived tainted data in programs we examined. Sec-
tion 5 covers related work. Section 6 describes our
thoughts about future work in this area. Finally, sec-
tion 7 concludes.

2 Motivation

This section examines why data lifetime is important,
how this issue has been overlooked in many of today’s
systems, why it is so difficult to ensure minimal data
lifetime, and how TaintBochs can help ameliorate these
problems.

Threat Model or Why Worry about Data Lifetime?
The longer sensitive data resides in memory, the greater
the risk of exposure. A long running process can easily
accumulate a great deal of sensitive data in its heap sim-
ply by failing to take appropriate steps to clear that mem-
ory beforefree() ing it. A skillful attacker observing
such a weakness could easily recover this information
from a compromised system simply by combing an ap-
plication’s heap. More importantly, the longer data re-
mains in memory the greater its chances of being leaked
to disk by swapping, hibernation, a virtual machine be-
ing suspended, a core dump, etc.

Basic measures for limiting the lifetime of sensitive
data including password and key material and keeping
it off persistent storage have become a standard part of
secure software engineering texts [29] and related liter-
ature [13, 28]. Extensive work has been done to gauge
the difficulty of purging data from magnetic media once
it has been leaked there [11], and even issues of per-
sistence in solid state storage have been examined [12].
Concern about sensitive data being leaked to disk has

fueled work on encrypted swap [21] and encrypted file
systems [4] which can greatly reduce the impact of sen-
sitive data leaks to disk. Unfortunately, these measures
have seen fairly limited deployment.

Identifying long-lived data is not so obviously useful
as, say, detecting remotely exploitable buffer overflows.
It is a more subtle issue of ensuring that principles of
conservative design have been followed to minimize the
impact of a compromise and decrease the risk of harmful
feature interactions. The principles that underly our mo-
tivation are: first, minimize available privilege (i.e. sen-
sitive data access) throughout the lifetime of a program;
second, defense in depth, e.g. avoid relying solely on
measures such as encrypted swap to keep sensitive data
off disk.

While awareness of data lifetime issues runs high
among the designers and implementers of cryptographic
software, awareness is low outside of this community.
This should be a significant point for concern. As our
work with Mozilla in particular demonstrates, even pro-
grams that should know better are entirely careless with
sensitive data. Perhaps one explanation for this phe-
nomenon is that if data is not explicitly identified as, for
example, a cryptographic key, it receives no special han-
dling. Given that most software has been designed this
way, and that this software is being used for a wide range
of sensitive applications, it is important to have an easy
means of identifying which data is sensitive, and in need
of special handling.

Minimizing Data Lifetime is Hard The many factors
which affect data lifetime make building secure systems
a daunting task. Even systems which strive to handle
data carefully are often foiled by a variety of factors
including programmer error and weaknesses in compo-
nents they rely upon. This difficulty underscores the
need for tools to aid examining systems for errors.

Common measures taken to protect sensitive data in-
clude zeroing out memory containing key material as
soon as that data is no longer needed (e.g. through the
C memset() function) and storing sensitive material
on pages which have been pinned in memory (e.g. via
the UNIX mmap() or mlock() system calls), to keep
them off of persistent storage. These measures can and
have failed in a variety of ways, from poor interactions
between system components with differing assumptions
about data lifetime to simple programmer error.

A very recent example is provided by Howard [14]
who noted thatmemset() alone is ineffective for clear-
ing out memory with any level of optimization turned on
in Borland, Microsoft, and GNU compilers. The prob-
lem is that buffers which are beingmemset() to clear
their contents are effectively “dead” already, i.e. they
will never be read again, thus the compiler marks this



code as redundant and removes it. When this problem
was revealed it was found that a great deal of software,
including a variety of cryptographic libraries written by
experienced programmers, had failed to take adequate
measures to address this. Now that this problem has
been identified, multiple ad-hoc ways to work around
this problem have been developed; however, none of
them is entirely straightforward or foolproof.

Sometimes explicitly clearing memory is not even
possible. If a program unexpectedly halts without clear-
ing out sensitive data, operating systems make no guar-
antees about when memory will be cleared, other than it
will happen before the memory is allocated again. Thus,
sensitive data can live in memory for a great deal of
time before it is purged. Similarly, socket buffers, IPC
buffers, and keyboard input buffers, are all outside of
programmer control.

Memory locking can fail for a wide range of rea-
sons. Some are as simple as memory locking functions
that provide misleading functionality. For example, a
pair of poorly documented memory locking functions in
some versions of Windows, namedVirtualLock()
andVirtualUnlock() , are simply advisory, but this
has been a point of notable confusion [13].

OS hibernation features do not respect memory lock-
ing guarantees. If programs have anticipated the need,
they can usually request notification before the system
hibernates; however, most programs do not.

Virtual machine monitors such as VMware Worksta-
tion and ESX [30] have limited knowledge of the mem-
ory management policies of their guest OSes. Many
VMM features, including virtual memory (i.e. paging),
suspending to disk, migration, etc., can write any and all
state of a guest operating system to persistent storage in
a manner completely transparent to the guest OS and its
applications. This undermines any efforts by the guest
to keep memory off of storage such as locking pages in
memory or encrypting the swap file.

In addition to these system level complications, un-
expected interactions between features within or across
applications can expose sensitive data. Features such
as logging, command histories, session management,
crash dumps/crash reporting, interactive error reporting,
etc. can easily expose sensitive data to compromise.

Systems are made of many components that applica-
tion designers did not develop and whose internals they
have little a priori knowledge of. Further, poor handling
of sensitive data is pervasive. While a few specialized
security applications and libraries are quite conservative
about their data handling, most applications, language
runtimes, libraries and operating system are not. As we
discuss later in Section 4, even the most common com-
ponents such as Mozilla, Apache, Perl, and Emacs and
even the Linux kernel are relatively profligate with their

handling of sensitive data. This makes building systems
which are conservative about sensitive data handling ex-
tremely difficult.

Whole System Simulation can Help TaintBoch’s ap-
proach of tracking sensitive data of interest via whole
system simulation is an attractive platform for tackling
this problem. It is practical, relatively simple to imple-
ment (given a simulator), and possesses several unique
properties that make it particularly well suited to exam-
ining data lifetime.

TaintBochs’s whole system view allows interactions
between components to be analyzed, and the location of
sensitive data to be easily identified. Short of this ap-
proach, this is a surprisingly difficult problem to solve.
Simply grep ing for a sensitive string to see if it is
present in system memory will yield limited useful infor-
mation. In the course of traversing different programs,
data will be transformed through a variety of encodings
and application specific data formats that make naive
identification largely impossible. For example, in sec-
tion 4 we find that a password passing from keyboard to
screen is alternately represented as keyboard scan codes,
plain ASCII, and X11 scan codes. It is buffered as a set
of single-character strings, and elements in a variety of
circular queues.

Because TaintBochs tracks data at an architectural
level, it does not require source code for the components
that an analysis traverses (although this does aid inter-
pretation). Because analysis is done at an architectural
level, it makes no assumptions about the correctness of
implementations of higher level semantics. Thus, high
level bugs or misfeatures (such as a compiler optimizing
awaymemset() ) are not overlooked.

Comparison of a whole system simulation approach
with other techniques is discussed further in the related
work, section 5.

3 TaintBochs Design and Implementation

TaintBochs is our tool for measuring data lifetime.
At its heart is a hardware simulator that runs the entire
software stack being analyzed. This software stack is re-
ferred to as theguest system. TaintBochs is based on the
open-source IA-32 simulator Bochs v2.0.2 [5]. Bochs
itself is a full featured hardware emulator that can emu-
late a variety of different CPUs (386, 486, or Pentium)
and I/O devices (IDE disks, Ethernet card, video card,
sound card, etc.) and can run unmodifiedx86 operating
systems including Linux and Windows.

Bochs is asimulator, meaning that guest code never
runs directly on the underlying processor—it is merely
interpreted, turning guest hardware instructions into ap-
propriate actions in the simulation software. This per-



mits incredible control, allowing us to augment the ar-
chitecture with taint propagation, extend the instruction
set, etc.

We have augmented Bochs with three capabilities to
produce TaintBochs. First, we provide the ability to
track the propagation of sensitive data through the sys-
tem at a hardware level, i.e. tainting. Second, we have
added logging capabilities that allow system state such
as memory and registers at any given time during a sys-
tem’s execution history to be examined. Finally, we de-
veloped an analysis framework that allows information
about OS internals, debug information for the software
that is running, etc. to be utilized in an integrated fashion
to allow easy interpretation of tainting information. This
allows us to trace tainted data to an exact program vari-
able in an application (or the kernel) in the guest, and
code propagating tainting to an exact source file and line
number.

Our basic usage model consists of two phases. First,
we run a simulation in which sensitive data (e.g. com-
ing from the keyboard, network, etc.) is identified as
tainted. The workload consists of normal user interac-
tion, e.g. logging into a website via a browser. In the sec-
ond phase, the simulation data is analyzed with the anal-
ysis framework. This allows us to answer open-ended
queries about the simulation, such as where tainted data
came from, where it was stored, how it was propagated,
etc.

We will begin by looking at the implementation of
TaintBochs, focusing on modifications to the simulator
to facilitate tainting, logging, etc. We will then move
on to examine the analysis framework and how it can be
used with other tools to gain a complete picture of data
lifetime in a system.

3.1 Hardware Level Tainting

There are two central issues to implementing hard-
ware level tainting: first, tracking the location of sensi-
tive state in the system, and, second, deciding how to
evolve that state over time to keep a consistent picture of
which state is sensitive. We will examine each of these
issues in turn.

Shadow Memory To track the location of sensitive
data in TaintBochs, we added another memory, set of
registers, etc. called ashadow memory. The shadow
memory tracks taint status of every byte in the system.
Every operation performed on machine state by the pro-
cessor or devices causes a parallel operation to be per-
formed in shadow memory, e.g. copying a word from
register A to location B causes the state in the shadow
register A to be copied to shadow location B. Thus to
determine if a byte is tainted we need only look in the
corresponding location in shadow memory.

If any bit in a byte is tainted, the entire byte is consid-
ered tainted. Maintaining taint status at a byte granular-
ity is a conservative approximation, i.e. we do not ever
lose track of sensitive data, although some data may be
unnecessarily tainted. Bit granularity would take mini-
mal additional effort, but we have not yet encountered a
situation where this would noticeably aid our analysis.

For simplicity, TaintBochs only maintains shadow
memory for the guest’s main memory and the IA-32’s
eight general-purpose registers. Debug registers, con-
trol registers, SIMD (e.g. MMX, SSE) registers, and
flags are disregarded, as is chip set and I/O device state.
Adding the necessary tracking for other processor or
I/O device state (e.g. disk, frame buffer) would be quite
straightforward, but the current implementation is suffi-
cient for many kinds of useful analysis. We are not ter-
ribly concerned about the guest’s ability to launder taint
bits through the processor’s debug registers, for exam-
ple, as our assumption is that software under analysis is
not intentionally malicious.

Propagation Policy We must decide how operations
in the system should affect shadow state. If two registers
A and B are added, and one of them is tainted, is the
register where the result are stored also tainted? We refer
to the collective set of policies that decide this as the
propagation policy.

In the trivial case where data is simply copied, we
perform the same operation in the address space of
shadow memory. So, if the assignmentA← B exe-
cutes on normal memory, thenA← B is also executed
on shadow memory. Consequently, ifB was tainted then
A is now also tainted, and ifB was not tainted,A is now
also no longer tainted.

The answer is less straightforward when an instruc-
tion produces a new value based on a set of inputs. In
such cases, our simulator must decide on whether and
how to taint the instruction’s output(s). Our choices
must balance the desire to preserve any possibly interest-
ing taints against the need to minimize spurious reports,
i.e. avoid tainting too much data or uninteresting data.
This roughly corresponds to the false negatives vs. false
positives trade-offs made in other taint analysis tools. As
we will see, it is in general impossible to achieve the lat-
ter goal perfectly, so some compromises must be made.

Processor instructions typically produce outputs that
are some function of their inputs. Our basic propaga-
tion policy is simply thatif any byte of any input value is
tainted, then all bytes of the output are tainted. This pol-
icy is clearlyconservativeand errs on the side of taint-
ing too much. Interestingly though, with the exception
of cases noted below, we have not yet encountered any
obviously spurious output resulting from our policy.



Propagation Problems There are a number of quite
common situations where the basic propagation policy
presented before either fails to taint interesting informa-
tion, or taints more than strictly necessary. We have dis-
covered the following so far:

• Lookup Tables. Sometimes tainted values are used
by instructions as indexes into non-tainted memory
(i.e. as an index into a lookup table). Since the tainted
valueitself is not used in the final computation, only
the lookup value it points to, the propagation pol-
icy presented earlier would not classify the output as
tainted.

This situation arises routinely. For example, Linux
routinely remaps keyboard device data through a
lookup table before sending keystrokes to user pro-
grams. Thus, user programs never directly see the
data read in from the keyboard device, only the non-
tainted values they index in the kernel’s key remap-
ping table.

Clearly this is not what we want, so we aug-
mented our propagation policy to handle tainted in-
dexes (i.e. tainted pointers) with the following rule:
if any byte of any input value that is involved in the
address computation of a source memory operand is
tainted, then the output is tainted, regardless of the
taint status of the memory operand that is referenced.
• Constant Functions. Tainted values are sometimes

used in computations that always produce the same
result. We call such computationsconstant functions.
An example of such a computation might be the fa-
miliar IA-32 idiom for clearing out a register:xor
eax, eax . After execution of this instruction,eax
always holds value0, regardless of its original value.

For our purposes, the output of constant functions
never pose a security risk, even with tainted inputs,
since the input values are not derivable from the out-
put. In thexor example above, it is no less the sit-
uation as if the programmer had instead writtenmov
eax, 0 . In thexor case, our naive propagation pol-
icy taints the output, and in themov case, our prop-
agation policy does not taint the output (since imme-
diate inputs are never considered tainted).

Clearly, our desire is to never taint the output of
constant functions. And while this can clearly be
done for special cases likexor eax, eax or sim-
ilar sequences likesub eax, eax , this cannot be
done in general since the general case (of which the
xor andsub examples are merely degenerate mem-
bers) is an arbitrary sequence of instructions that ul-
timately compute a constant function. For example,
assumingeax is initially tainted, the sequence:

mov ebx, eax ; ebx = eax
add ebx, ebx ; ebx = 2 * eax

shl eax, 1 ; eax = 2 * eax
xor ebx, eax ; ebx = 0

Always computes (albeit circuitously) zero forebx ,
regardless of the original value ofeax . By the time
the instruction simulation reaches thexor , it has no
knowledge of whether its operands have the same
value because of some deterministic computation or
through simple chance; it must decide, therefore, to
taint its output.

One might imagine a variety of schemes to address
this problem. Our approach takes advantage of the
semantics of tainted values. For our research, we are
interested in tainted data representing secrets like a
user-typed password. Therefore, we simply define by
fiat that we are only interested in taints on non-zero
values. As a result, any operation that produces a zero
output value never taints its output, since zero outputs
are, by definition, uninteresting.

This simple heuristic has the consequence that
constant functions producing nonzero values can still
be tainted. This has not been a problem in practice
since constant functions themselves are fairly rare,
except for the degenerate ones that clear out a reg-
ister. Moreover, tainted inputs find their way into a
constant function even more rarely, because tainted
memory generally represents a fairly small fraction
of the guest’s overall memory.

• One-way Functions. Constant functions are an inter-
esting special case of a more general class of compu-
tations we callone-way functions. A one-way func-
tion is characterized by the fact that its input is not
easily derived from its output. The problem with one-
way functions is that tainted input values generally
produce tainted outputs, just as they did for constant
functions. But since the output value gives no prac-
tical information about the computation’s inputs, it
is generally uninteresting to flag such data as tainted
from the viewpoint of analyzing information leaks,
since no practical security risk exists.

A concrete example of this situation occurs in
Linux, where keyboard input is used as a source of
entropy for the kernel’s random pool. Data collected
into the random pool is passed through various mix-
ing functions, which include cryptographic hashes
like SHA-1. Although derivatives of the original key-
board input are used by the kernel when it extracts
entropy from the pool, no practical information can
be gleaned about the original keyboard input from
looking at the random number outputs (at least, not
easily).

Our system does not currently try to remove
tainted outputs resulting from one-way functions,
since instances of such taints are few and easily iden-



tifiable. Moreover, such taints are often useful for
identifying the spread of tainted data, for example,
the hash of a password is often used as a crypto-
graphic key.

Evading Tainting While the propagation policy de-
fined above works well for us in practice, data can be
propagated in a manner that evades tainting. For exam-
ple, the following C code,

if (x == 0) y = 0;
else if (x == 1) y = 1;
...
else if (x == 255) y = 255;

effectively copiesx to y , but since TaintBochs does not
taint comparison flags or the output of instructions that
follow a control flow decision based on them, the asso-
ciated taint forx does not propagate toy . Interestingly,
the Windows 2000 kernel illustrates this problem when
translating keyboard scancodes into unicode.

Another possible attack comes from the fact that
TaintBochs never considers instruction immediates to be
tainted. A guest could take advantage of this by dynami-
cally generating code with proper immediate values that
constructs a copy of a string.

Because such attacks do exist, TaintBochs can never
prove the absence of errors; we don’t expect to use it
against actively malicious guests. Instead, TaintBochs is
primarily focused on being a testing and analysis tool for
finding errors.

Taint Sources TaintBochs supports a variety of meth-
ods for introducing taints:

• Devices. I/O devices present an excellent opportu-
nity to inject taints into the guest, since they represent
the earliest point of the system at which data can be
introduced. This is a crucial point, since we are in-
terested in the way a whole system handles sensitive
data, even the kernel and its device drivers. Taint-
Bochs currently supports tainting of data at the key-
board and network devices. Support for other devices
is currently under development.1

Keyboard tainting simply taints bytes as they are
read from the simulated keyboard controller. We use
this feature, for example, to taint a user-typed pass-
word inside a web browser (see section 4.1.1 for de-
tails). This features is essentially binary: keyboard
tainting is either on or off.

1Support for disk tainting and frame buffer tainting is currently un-
derway. With this addition we hope to more completely understand
when data is leaked to disk and its lifetime there. We anticipate this
will be complete before publication.

Tainting data at the Ethernet card is a slightly more
complicated process. We do not want to simply taint
entire Ethernet packets, because Ethernet headers,
TCP/IP headers, and most application data are of lit-
tle interest to us. To address this we provide the net-
work card with one or more patterns before we begin
a simulation. TaintBochs scans Ethernet frames for
these patterns, and if it finds a match, taints the bytes
that match the pattern. These taints are propagated to
memory as the frame is read from the card. Although
this technique can miss data that should be tainted
(e.g. when a string is split between two TCP packets)
it has proved sufficient for our needs so far.

• Application-specific. Tainting at the I/O device level
has as its chief benefit the fact that it undercuts all
software in the system, even the kernel. However
this approach has limitations. Consider, for exam-
ple, the situation where one wants to track the life-
time and reach of a user’s password as it is sent over
the network to an SSH daemon. As part of the SSH
exchange, the user’s password is encrypted before be-
ing sent over the network, thus our normal approach
of pattern matching is at best far more labor intensive,
and less precise than we would like.

Our current solution to this situation, and others
like it, is to allow theapplication to decide what is
interesting or not. Specifically, we added an instruc-
tion to our simulated IA-32 environment to allow the
guest to taint data:taint eax . Using this we can
modify the SSH daemon to taint the user’s password
as soon as it is first processed. By pushing the taint
decision-making up to the application level, we can
skirt the thorny issue that stopped us before by taint-
ing the password after it has been decrypted by the
SSH server. This approach has the unfortunate prop-
erty of being invasive, in that it requires modification
of guest code. It also fails to taint encrypted data in
kernel and user buffers, but such data is less interest-
ing because the session key is also needed to recover
sensitive data.

3.2 Whole-System Logging

TaintBochs must provide some mechanism for an-
swering the key questions necessary to understand taint
propagation:Who has tainted data? How did they get
it? andWhen did that happen?. It achieves this through
whole-system logging.

Whole system logging records sufficient data at simu-
lation time to reconstitute a fairly complete image of the
state of a guest at any given point in the simulation. This
is achieved by recording all changes to interesting sys-
tem state, e.g. memory and registers, from the system’s
initial startup state. By combining this information with
the initial system image we can “play” the log forward



to give us the state of the system at any point in time.
Ideally, we would like to log all changes to state,

since we can then recreate a perfect image of the guest
at a given instant. However, logging requires storage for
the log and has runtime overhead from logging. Thus,
operations which are logged are limited to those neces-
sary to meet two requirements. First we need to be able
to recreate guest memory and its associated taint status
at any instruction boundary to provide a complete pic-
ture of what was tainted. Second, we would like to have
enough register state available to generate a usefulback-
trace to allow deeper inspection of code which caused
tainting.

To provide this information the log includes writes to
memory, changes to memory taint state, and changes to
the stack pointer register (ESP) and frame pointer reg-
ister (EBP). Each log entry includes the address (EIP)
of the instruction that triggered the log entry, plus the
instruction count, which is the number of instructions
executed by the virtual CPU since it was initialized.

To assemble a complete picture of system state Taint-
Bochs dumps a full snapshot of system memory to disk
each time logging is started or restarted. This ensures
that memory contents are fully known at the log’s start,
allowing subsequent memory states to be reconstructed
by combining the log and the initial snapshot.

Logging of this kind is expensive: at its peak, it pro-
duces about 500 MB/minute raw log data on our 2.4
GHz P4 machines, which reduces about 70% when we
addgzip compression to the logging code. To further
reduce log size, we made it possible for the TaintBochs
user to disable logging when it is unneeded (e.g. during
boot or between tests). Even with these optimizations,
logging is still slow and space-consuming. We discuss
these overheads further in section 6.

3.3 Analysis Framework

Taint data provided by TaintBochs is available only
at the hardware level. To interpret this data in terms of
higher level semantics, e.g. at a C code level, hardware
level state must be considered in conjunction with ad-
ditional information about software running on the ma-
chine. This task is performed by the analysis framework.

The analysis framework provides us with three major
capabilities. First, it answers the question of which data
is tainted by giving the file name and line number where
a tainted variable is defined. Second, it provides a list
of locations and times identifying the code (by file name
and line number) which caused a taint to propagate. By
browsing through this list the causal chain of operations
that resulted in taint propagation can be unraveled. This
can be walked through in a text editor in a fashion sim-
ilar to a list of compiler errors. Finally, it provides the
ability to inspect any program that was running in the

guest at any point in time in the simulation usinggdb .
This allows us to answer any questions about tainting
that we may not have been able to glean by reading the
source code.

Traveling In Time The first capability our analysis
framework integrates is the ability to scroll back and
forth to any time in the programs execution history. This
allows the causal relationship between different tainted
memory regions to be established, i.e. it allows us to
watch taints propagate from one region of memory to the
next. This capability is critical as the sources of taints
become untainted over time, preventing one from under-
standing what path data has taken through the system
simply by looking at a single point.

We have currently implemented this capability
through a tool calledreplay which can generate a
complete and accurate image of a simulated machine at
any instruction boundary. It does this by starting from
a snapshot and replaying the memory log. It also out-
puts the physical addresses of all tainted memory bytes
and provides the values of EBP and ESP, exactly, and
EIP, as of the last logged operation. EBP and ESP make
backtraces possible and EIP is identifies the line of code
that caused tainting (e.g. copied tainted data).replay
is a useful primitive, but it still presents us with only raw
machine state. To determine what program or what part
of the kernel owns tainted data or what code caused it to
be tainted we rely on another tool calledx-taints .

Identifying Data A second capability of the analysis
framework is matching raw taint data with source-level
entities in user code, currently implemented through a
tool calledx-taints , our primary tool for interpret-
ing tainting information. It combines information from
a variety of sources to produce a file name and line num-
ber where a tainted variable was defined.

x-taints identifies static kernel data by referring
to System.map , a file produced during kernel compi-
lation that lists each kernel symbol and its address. Mi-
crosoft distributes similar symbol sets for Windows, and
we are working towards integrating their use into our
analysis tools as well.

x-taints identifies kernel heap allocated data us-
ing a patch we created for Linux guests that appends
source file and line number information to each re-
gion allocated by the kernel dynamic memory alloca-
tor kmalloc() . To implement this we added extra
bytes to the end of every allocated region to store this
data. When run against a patched kernel, this allows
x-taints to display such information in its analysis
reports.

x-taints identifies data in user space in several
steps. First,x-taints generates a table that maps



physical addresses to virtual addresses for each process.
We do this using a custom extension to Mission Criti-
cal’s crash , software for creating and analyzing Linux
kernel crash dumps. This table allows us to identify the
process or processes that own the tainted data. Once
x-taints establishes which process owns the data it
is interested in,x-taints turns to a second custom
crash extension to obtain more information. This ex-
tension extracts a core file for the process from the phys-
ical memory image on disk.x-taints appliesgdb
to the program’s binary and the core file and obtains the
name of the tainted variable.

For analysis of user-level programs to be effective,
the user must have previously copied the program’s bi-
nary, with debugging symbols, out of the simulated ma-
chine into a location known tox-taints . For best
results the simulated machine’s libraries and their de-
bugging symbols should also be available.

Studying Code Propagating Taints The final capa-
bility that the analysis framework provides is the ability
to identify which code propagated taints, e.g. if a call to
memcpycopies tainted data, then its caller, along with
a full backtrace, can be identified by their source file
names and line numbers.

x-taints discovers this by replaying a memory log
and tracking, for every byte of physical memory, the PID
of the program that last modified it, the virtual address of
the instruction that last modified it (EIP), and the instruc-
tion count at which it was modified.2 Using this data,
x-taints consults eitherSystem.map or a gener-
ated core file and reports the function, source file, and
line number of the tainting code.

x-taints can also bring upgdb to allow investiga-
tion of the state of any program in the simulation at any
instruction boundary. Most of the debugger’s features
can be used, including full backtraces, inspecting local
and global variables, and so on. If the process was run-
ning at the time of the core dump, then register variables
in the top stack frame will be inaccurate because only
EBP and ESP are recorded in the log file. For processes
that are not running, the entire register set is accurately
extracted from where it is saved in the kernel stack.

4 Exploring Data Lifetime with Taint-
Bochs

Our objective in developing TaintBochs was to pro-
vide a platform to explore the data lifetime problem in
depth in real systems. With our experimental platform

2An earlier version recorded the physical address corresponding to
EIP, instead of PID plus virtual address. This unnecessarily compli-
cated identifying the process responsible when a shared library func-
tion (e.g.memmove) tainted memory.

in place, our next task was to examine the scope of the
data lifetime in common applications.

In applying TaintBochs we concerned ourselves with
three primary issues:

• Scope. Where was sensitive data was being copied to
in memory.

• Duration. How long did that data persist?
• Implications. Beyond the mere presence of problems,

we wanted to discover how easy they would be to
solve, and what the implications were for implement-
ing systems to minimize data lifetime.

There is no simple answer to any of these questions in
the systems we analyzed. Data was propagated all over
the software stack, potential lifetimes varied widely, and
while a wide range of data lifetime problems could be
solved with small changes to program structure, there
was no single silver bullet. The one constant that did
hold was that careful handling of sensitive data was al-
most universally absent.

We performed three experiments in total, all of them
examining the handling of password data in a different
contexts. Our first experiment examined Mozilla [27],
a popular open source web browser. Our second ex-
periment tests Apache [1], by some reports the most
popular server in the world, running a simple CGI ap-
plication written in Perl. We believe these first two
experiments are of particular interest as these plat-
forms process millions of sensitive transactions on a
daily basis. Finally, our third experiment examines
GNU Emacs [26], the well-known text-editor-turned-
operating-system, used by many as their primary means
of interaction with UNIX systems.

In section 4.1 we describe the design of each of our
experiments and report where in the software stack we
found tainted data. In section 4.2 we analyze our re-
sults in more detail, explaining the lifetime implications
of each location where sensitive data resided (e.g. I/O
buffers, string buffers). In section 4.3 we report the re-
sults of experiments in modifying the software we pre-
viously examined to reduce data lifetime.

4.1 Experimental Results

4.1.1 Mozilla

In our first experiment we tracked a user-input password
in Mozilla during the login phase of the Yahoo Mail
website.

Mozilla was a particularly interesting subject not only
because of its real world impact, but also because its
size. Mozilla is a massive application (∼3.7 million
lines of code) written by many different people, it also
has a huge number of dependencies on other compo-
nents (e.g. GUI toolkits).



Given its complexity, Mozilla provided an excellent
test of TaintBoch’s ability to make a large application
comprehensible. TaintBochs passed with flying colors.
One of us was able to analyze Mozilla in roughly a day.
We consider this quite acceptable given the size of the
data set being analyzed, and that none of us had prior
familiarity with its code base.

For our experiment, we began by a booting a Linux3

guest inside TaintBochs. We then logged in as an unpriv-
ileged user, and started X with thetwm window man-
ager. Inside X, we started Mozilla and brought up the
webpagemail.yahoo.com , where we entered a user
name and password in the login form. Before entering
the password, we turned on TaintBoch’s keyboard taint-
ing, and afterward we turned it back off. We then closed
Mozilla, logged out, and closed TaintBochs.

When we analyzed the tainted regions after Mozilla
was closed, we found that many parts of the system fail
to respect the lifetime sensitivity of the password data
they handle. The tainted regions included the following:

• Kernel random number generator. The Linux ker-
nel has a subsystem that generates cryptographically
secure random numbers, by gathering and mixing en-
tropy from a number of sources, including the key-
board. It stores keyboard input temporarily in a cir-
cular queue for later batch processing. It also uses
a global variablelast scancode to keep track of
the previous key press; the keyboard driver also has a
similar variableprev scancode .
• XFree86 event queue. The X server stores user-input

events, including keystrokes, in a circular queue for
later dispatch to X clients.
• Kernel socket buffers. In our experiment, X relays

keystrokes to Mozilla and its other clients over Unix
domain sockets using thewritev system call. Each
call causes the kernel to allocate ask buff socket
structure to hold the data.
• Mozilla strings. Mozilla, written in C++, uses a num-

ber of related string classes to process user data. It
makes no attempt to curb the lifetime of sensitive
data.
• Kernel tty buffers. When the user types keyboard

characters, they go into astruct tty struct
“flip buffer” directly from interrupt context. (A flip
buffer is divided into halves, one used only for read-
ing and the other used only for writing. When data
that has been written must be read, the halves are
“flipped” around.) The key codes are then copied into
a tty, which X reads.

3We conducted our experiment on a Gentoo [10] Linux guest with
a 2.4.23 kernel. The guest used XFree86 v4.3.0r3 and Mozilla v1.5-r1.

4.1.2 Apache and Perl

In our second experiment, we ran Apache inside Taint-
Bochs, setting it up to grant access to a CGI script writ-
ten in Perl. We tracked the lifetime of a password en-
tered via a simple form and passed to a trivial CGI script.

Our CGI script initialized Perl’s CGI module and out-
put a form with fields for user name, password, and a
submit button that posted to the same form. Perl’s CGI
module automatically parses the field data passed to it
by the browser, but the script ignores it. This CGI script
represents the minimum amount of tainting produced by
Perl’s CGI module as any CGI script that read and used
the password would almost certainly create extra copies
of it.

In this experiment, the web client, running outside
TaintBochs, connected to the Apache server running in-
side. TaintBochs examined each Ethernet frame as it en-
tered the guest, and tainted any instance of a hard-coded
password found in the frame. This technique would not
have found the password had it been encoded, split be-
tween frames, or encrypted, but it sufficed for our simple
experiment.

Using Apache version 1.3.29 and Perl version 5.8.2,
we tracked the following sequence of taints as we sub-
mitted the login form and discovered that the taints listed
below persist after the request was fully handled by
Apache and the CGI program:

• Kernel packet buffers. In function
ne block input , the Linux kernel reads the
Ethernet frame from the virtual NE2000 network
device into a buffer dynamically allocated with
kmalloc . The frame is attached to ansk buff
structure used for network packets. As we found
with Unix domain sockets in the Mozilla experiment,
the kernel does not zero these bytes when they are
freed, and it is difficult to predict how soon they will
be reused.

• Apache input buffers. When Apache reads the HTTP
request in theap bread function, the kernel copies
it from its packet buffer into a buffer dynamically
allocated by Apache. The data is then copied to
a stack variable by the CGI module in function
cgi handler . Because it is on the stack, the latter
buffer is reused for each CGI request made to a given
Apache process, so it is likely to be erased quickly
except on very low-volume web servers.

• Apache output buffer. Apache copies the request to a
dynamically allocated output buffer before sending it
to the CGI child process.

• Kernel pipe buffer. Apache flushes its output buffer
to the Perl CGI subprocess through a pipe, so tainted
data is copied into a kernel pipe buffer.

• Perl file input buffer. Perl reads from the pipe into a



dynamically allocated file buffer, 4 kB in size. The
buffer is associated with the file handle and will not
be erased as long as the file is open and no additional
I/O is done. Because Apache typically sends much
less than 4 kB of data through the pipe, the read buffer
persists at least as long as the CGI process.
• Perl string buffers. Perl copies data from the input

buffer into a Perl string, also dynamically allocated.
Furthermore, in the process of parsing, the tainted
bytes are copied into a second Perl string.

All of these buffers contain the full password in cleart-
ext.

4.1.3 Emacs

In our third experiment we tracked the lifetime of a pass-
word entered intosu by way of Emacs’s shell mode.

At its core GNU Emacs is a text editor. Because it
is built on top of a specialized Lisp interpreter, modern
versions can do much more than edit text. Indeed, many
users prefer to do most of their work within Emacs.

Many of the functions Emacs performs may in-
volved handling sensitive data, for example, activities
that might prompt for passwords include interacting with
shells, browsing web pages, reading and sending email
and newsgroup articles, editing remote files viassh ,
and assorted cryptographic functionality.

We chose Emacs’ “shell mode” for our first inves-
tigation. In shell mode, an Emacs buffer becomes an
interface to a Unix shell, such asbash , running as an
Emacs subprocess. Emacs displays shell output in the
buffer and passes user input in the buffer to the shell.
Emacs does not implement most terminal commands in
the shell buffer, including commands for disabling lo-
cal echo, so passwords typed in response to prompts by
ssh , su , etc. would normally echo. As a workaround,
shell mode includes a specialized facility that recognizes
password prompts and reads them without echo in a sep-
arate “minibuffer.” We decided to investigate how thor-
oughly Emacs cleared these passwords from its memory
after passing them to the subprocess.

To start the experiment, we booted a guest running
the Debian GNU/Linux “unstable” distribution, logged
in as an unprivileged user, and started Emacs. Within
Emacs, we started shell mode and entered thesu com-
mand at the shell prompt.4 Using the TaintBochs inter-
face, we enabled tainting of keyboard input, typed the
root password, and then disabled keyboard input taint-
ing. Finally, we closed the shell sessions, exited Emacs,
logged off, and shut down TaintBochs.

Using the generated memory and taint logs, we ran
a taint analysis at a point soon after thesu subshell’s

4Given the superuser’s password,su opens a subshell with supe-
ruser privileges.

prompt had appeared in the Emacs buffer. The results
identified several tainted regions in Emacs and the ker-
nel:

• Kernel random number generator and keyboard data.
See the Mozilla experiment (section 4.1.1) for more
information.

• Global variable kbd buffer . All Emacs input
passes through this buffer, arranged as a circular
queue. Each buffer element is only erased after ap-
proximately 4,096 further input “events” (keyboard
or mouse activities) have occurred.

• Data referenced by global variablerecent keys .
This variable keeps track of the user’s last 100
keystrokes.

• Each character in the password, as a 1-character
Lisp string. Lisp functioncomint-read-noecho
accumulates the password string by converting each
character to a 1-character string, then concatenating
those strings. These strings are unreferenced and will
eventually be recycled by the garbage collector, al-
though when they will be erased is unpredictable (see
appendix A for further discussion).

• The entire password as a Lisp string. The password
is not cleared after it is sent to the subprocess. This
string is also unreferenced.

• Stack. Emacs implements Lisp function calls in terms
of C function calls, so the password remains on the
process stack until it is overwritten by a later function
call that uses as much stack.

• Three kernel buffers. When the user types keyboard
characters, they go into astruct tty struct
“flip buffer” directly from interrupt context. The key
codes are then copied into a tty that Emacs reads, and
then into a second tty when Emacs passes the pass-
word to its shell subprocess.

The password typed can be recovered from any of these
tainted regions. The tainted strings are of particular
interest: the Emacs garbage collector, as a side effect
of collecting unreferenced strings, will erase the first 4
bytes (8 bytes, on 64-bit architectures) of a string. Thus,
several of the taints above would have shrunk or dis-
appeared entirely had we continued to use Emacs long
enough for the garbage collector to be invoked.

Finally, as part of our investigation, we dis-
covered that entering a special Emacs command
(view-lossage ) soon after typing the password
would actually reveal it on-screen in plaintext form.
This behavior is actually documented in the Emacs de-
veloper documentation forcomint-read-noecho ,
which simply notes that “some people find this wor-
rysome [sic].” Because this piece of advice is not in
the Emacs manual, a typical Emacs user would never
see it. The same developer documentation also says that,



“Once the caller uses the password, it can erase the pass-
word by doing(fillarray STRING 0) ,” which is
untrue, as we can see from the above list of taints.

4.1.4 Windows 2000 Workloads

To illustrate the generality of data lifetime problems, our
fourth experiment consisted of two workloads running
on Windows 2000.

We first examined the process of logging into a Win-
dows 2000 machine. By tainting keyboard input while
typing the user’s password at Windows’ initial login dia-
log, we found at least two occurrences of the password in
memory after the login process was completed: a tainted
scancode representation and a unicode representation.

Our second workload mirrors the web login experi-
ment we ran with Mozilla on Linux (see section 4.1.1).
In this workload, we used Internet Explorer 5.0 under
Windows 2000. We again found a tainted scancode rep-
resentation of the password sitting in memory after the
login process was complete.

We have forgone further analysis as a lack of applica-
tion and OS source code limited our ability to diagnose
the cause of taints and discern how easily they could be
remedied.

4.2 Analysis of Results

This section discusses the results found in the previ-
ous sections and discusses the data lifetime implications
of each major class of tainting result found. For a more
in-depth discussion of the data lifetime implications of
different storage classes (e.g. stack, heap, dynamically
allocated vs. garbage collected), the reader should see
appendix A.

4.2.1 Circular Queues

Circular queues of events are common in software. Cir-
cular queue data structures are usually long-lived and of-
ten even statically allocated. Data in a circular queue
survives only as long as it takes the queue to wrap
around, although that may be a long time in a large or
inactive queue.

Our experiments uncovered three queues that handle
tainted data: the Linux kernel random number generator
batch processing queue (described in more detail in sec-
tion 4.2.4 below), XFree86’s event queue, and Emacs’
event queue.

In each case we encountered, tainted data was stored
in plaintext form while it awaited processing. More im-
portantly, in each case, after inputs were consumed, they
were simply left on the queue until they were eventu-
ally overwritten when the queue head wrapped around.
Because each queue processes keyboard input, these fac-
tors present a non-deterministic window of opportunity

for an attacker to discover keys typed, since keystrokes
are left in the queue even after they have been consumed.

We can significantly reduce data lifetime in each of
the cases encountered simply by zeroing input after it
has been consumed. In section 4.3, we describe applica-
tion of such a fix to Emacs.

4.2.2 I/O Buffers

Buffers are more transient and thus tend to be allocated
on the heap or, occasionally, the stack. Buffers are some-
times created for use in only a single context, as with the
case of kernel network buffers. In other cases, they sur-
vive as long as an associated object, as in the case of
kernel pipe buffers and some Apache input buffers.

Our experiments encountered many kinds of tainted
input and output buffer data. In the Mozilla experiment,
we found tainted tty buffers and Unix domain socket
buffers; in the Apache and Perl experiment, we found
tainted kernel network buffers, Apache input and output
buffers, kernel pipe buffers, and Perl file input buffers.

There is no simple bound on the amount of time be-
fore freed buffer data will be reallocated and erased.
Even if an allocator always prefers to reuse the most re-
cently freed block for new allocations (“LIFO”), some
patterns of allocate and free operations, such as a few
extra free operations in a sequence that tends to keep
the same amount of memory allocated, can cause sensi-
tive data to linger for excessive amounts of time. Doug
Lea’s malloc() implementation, used inglibc 2.x
and elsewhere, actually has far more complex behavior
that actually tends toward “FIFO” behavior in some cir-
cumstances (see Appendix A for more details). Heap
fragmentation can also extend sensitive data lifetime.

We can solve the problem of sensitive data in I/O
buffers by zeroing them when they are no longer needed.
Because relatively large I/O buffers of 4 kB or more are
often allocated even for a few bytes, only space in the
buffer that was actually filled with data should be ze-
roed.

4.2.3 Strings

Tainted strings appeared in the results of all three of our
experiments: in Mozilla, C++ string classes; in Perl, Perl
strings; in Emacs, Lisp strings.

String data tends to be allocated on the heap or, occa-
sionally, the stack. Strings are often used in operations
that copy data, such as concatenation or substring op-
erations. This can lead their contents to be replicated
widely in the heap and the stack.

This type of replication was especially prevalent in
the cases we encountered because of the high-level na-
ture of the string representations used. In each case, the



NS_IMETHODIMP
nsTextControlFrame::CheckFireOnChange()
{

nsString value;
GetText(&value);
//different fire onchange
if (!mFocusedValue.Equals(value))
{

mFocusedValue = value;
FireOnChange();

}
return NS_OK;

}

Figure 1: In this example Mozilla needlessly
replicates sensitive string data in the heap.
nsString’s constructor allocates heap space and
GetText(&value) taints that data. This extra
copy is unnecessary merely to do a comparison.

programmer need not be aware of memory allocation
and copying. Indeed, Perl and Emacs Lisp provide no
obvious way to determine that string data has been real-
located and copied. Normally this is a convenience, but
for managing the lifetime of sensitive data it is a hazard.

We discovered that this problem is especially vexing
in Mozilla, because there are many easy pitfalls that can
end up making heap copies of strings. Figure 1 illus-
trates this situation with a snippet of code from Mozilla
that ends up making a heap copy of a string just to do
a string comparison (nsString is a string class that
allocates storage from the heap). This needlessly puts
another copy of the string on the heap and could have
been accomplished through a variety of other means as
fundamentally string comparison does not require any
additional allocation.

Because, like buffer data, tainted strings tend to oc-
cupy heap or stack space, the considerations discussed
in the previous section for determining how long freed
data will take to be cleared also apply to string data. In
practice the pattern of lifetimes is likely to differ, be-
cause buffers are typically fixed in size whereas strings
vary widely.

4.2.4 Linux Random Number Generator

In both the Mozilla and Emacs experiments we discov-
ered tainted data in the Linux kernel associated with
its cryptographically secure random number generator
(RNG). The source of this tainting was keyboard input
which is used as a source of randomness. The locations
tainted fell into three categories.

First, the RNG keeps track of the user’s last keystroke
in static variablelast scancode so that repeated

keystrokes from holding down a key are not used as
a source of randomness. This variable holds only one
keystroke and is overwritten on subsequent key press,
thus it is a source of limited concern.

Second, to avoid doing expensive hash calcula-
tions in interrupt context, the RNG stores plain-
text keystrokes into a 256-entry circular queue
batch entropy pool and processes them later in a
batch. The same queue is used for batching other sources
of randomness, so the length of the window of opportu-
nity to recover data from this queue depends heavily on
workload, data lifetime could vary from seconds to min-
utes on a reasonably loaded system to hours or even days
on a system left suspended or hibernated.

Third, the RNG’s entropy pools are tainted. These
are of little concern, because data is added to the pools
only via “mixing functions” that would be difficult or
impossible for an attacker to invert.

4.3 Treating the Taints

4.3.1 Mozilla

Mozilla makes no attempt to reduce lifetime of sensi-
tive form data, however, simple remedies exist which
can help significantly.

First, uses ofnsString for local variables (as
in Figure 1) can be replaced with variables of type
nsAutoString , a string class that derives buffer
space from the same storage class as the string itself,
thus, data in stack based storage will not be propagated
to the heap. This practice is actually recommended by
Mozilla coding guidelines, so the example code snippet
in Figure 1 ought to have incorporated this change.

One often legitimately needs to have a heap-allocated
string e.g. in string members of a dynamically allocated
object. Therefore, to reduce data lifetime in this case
classes should zero out their contents when they are de-
stroyed. This trivial change to the string class’s destruc-
tor significantly reduces the lifetime of sensitive data,
without inducing any perceptible change in program per-
formance.

To evaluate the impact of this approach we added ze-
roing to string destructors in Mozilla, and reran our ex-
periments. We found this small change was very suc-
cessful in reducing both the amount of tainted data and
its lifetime. With this patch, the amount of tainted data in
Mozilla’s address space reduced in half, and taints from
destroyed string objects were completely eliminated.

Figure 2 illustrates this point by showing the amount
of tainted string data in Mozilla’s address space as a
function of time (as measured in tens of millions of in-
structions elapsed since the start of tainting). The spike
in both runs marks when the user has submitted the
web form containing their password. During this time,
Mozilla does considerable processing on the password:
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Figure 2: A comparison of the amount of tainted
string data in the original Mozilla versus our modi-
fied version. Our zero-on-free string remedy reduces
tainted string data by half in the steady state.

it is touched by GUI widgets, HTML form handling
code, and even the browser’s JavaScript engine.

String data is progressively deallocated by Mozilla as
it finishes the form submission process and begins load-
ing the next page. As Figure 2 shows, the amount of
tainted data is reduced by roughly half once Mozilla hits
a steady state. The difference between the original and
modified runs is entirely accounted for by garbage heap
data from Mozilla’s various string classes.

The baseline of tainted data bytes in the modified run
is accounted for by explicitchar* copies made from
string classes. This means that our patch entirely elim-
inated tainted data resulting from destroyed string ob-
jects in our experiment, and highlighted the places where
Mozilla made dangerous explicitchar* string copies.

4.3.2 Emacs

As with Mozilla, we modified Emacs to reduce the num-
ber of long-lived tainted regions. We made two changes
to its C source code, each of which inserted only a single
call to memset. First, we modifiedclear event , a
function called to clear input events as they are removed
from the input queue. The existing code only set events’
type codes tono event , so we added a line to zero the
remainder of the data.

Second, we modifiedsweep strings , called by
the garbage collector to collect unreferenced strings.
The existing code zeroed the first 4 bytes (8 bytes, on
64-bit architectures) of strings as a side effect. We mod-
ified it to zero all bytes of unreferenced strings.

We reran the experiment with these modifications,

forcing garbage collection after entering the password.
This had the desired effect: all of the tainted, unrefer-
enced Lisp strings were erased, as were all of the tainted
input buffer elements. We concluded that relatively sim-
ple changes to Emacs can have a significant impact on
the lifetime of sensitive data entrusted to it.

5 Related Work
Previous work on whole system simulation for ana-

lyzing software has largely focused on studying perfor-
mance and providing a test bed for new hardware fea-
tures. Extensive work on the design of whole system
simulators including performance, extensibility, inter-
pretation of hardware level data in terms of higher level
semantics, etc. was explored in SimOS [22].

Dynamic binary translators which operate at the sin-
gle process level instead of the whole system level have
demonstrated significant power for doing dynamic anal-
ysis of software [8]. These systems work as assembly-
to-assembly translators, dynamically instrumenting bi-
naries as they are executed, rather than as complete sim-
ulators. For example, Valgrind [19] has been widely
deployed in the Linux community and provides a wide
range of functionality including memory error detection
(à la Purify [15]), data race detection, cache profiling,
etc. Somewhere between an full simulator and binary
translator is Hobbes [7], a single processx86 interpreter
that can detect memory errors and perform runtime type
checking. Hobbes and Valgrind both provide frame-
works for writing new dynamic analysis tools.

Dynamo [3] is an extremely fast binary translator,
akin to an optimizing JIT compiler intended to be run
during program deployment. It has been used to per-
form dynamic checks to enhance security at runtime by
detecting deviations from normal execution patterns de-
rived via static analysis. This technique has been called
program shepherding [16]. It is particularly interesting
in that it combines static analysis with dynamic check-
ing.

These systems have a narrower scope than Taint-
Bochs as they operate on a single program level, but they
offer significant performance advantages. That said, bi-
nary translators that can operate at the whole system
level with very high efficiency have been demonstrated
in research [31] and commercial [18] settings. The tech-
niques demonstrated in TaintBochs could certainly be
applied in these settings.

The term “tainting” has traditionally referred to tag-
ging data to denote that the data comes from an untrusted
source. Potential vulnerabilities are then discovered by
determining whether tainted data ever reaches a sensitive
sink. This of course differs from our use of taint infor-
mation, but the fundamental mechanism is the same. A
tainted tag may be literally be a bit associated with data,



as in systems like TaintBochs or Perl’s tainting or may
simply be an intuitive metaphor for understanding the
results of a static analysis.

Perl [20] provides the most well known example
of tainting. In Perl, if “tainting” is enabled, data
read by built-in functions from potentially untrusted
sources, i.e. network sockets, environment variables, etc.
is tagged as tainted. Regular expression matching clears
taint bits and is taken to mean that the programmer is has
checked that the input is “safe.” Sensitive built-in func-
tions (e.g.exec ) will generate a runtime error if they
receive tainted arguments.

Static taint analysis has been applied by a variety
of groups with significant success. Shankar et al. [24]
used their static analysis tool Percent-S to detect format
string vulnerabilities based on a tainting style analysis
using type qualifier inference and programmer annota-
tions. Scrash [6], infers which data in a system is sensi-
tive based on programmer annotations to facilitate spe-
cial handling of that data to allow secure crash dumps,
i.e. crash dumps which can be shipped to the application
developer without revealing users sensitive data. This
work is probably the most similar to ours in spirit as its
focus is on making a feature with significant impact on
sensitive data lifetime safe. The heart of both of these
systems is the CQual [23], a powerful system for sup-
porting user extensible type inference.

Ashcraft et al. [2] successfully applied a tainting style
static analysis in the context of their meta-compilation
system with extremely notable success. In the context
of this work they were able to discover a large number
of new bugs in the Linux and OpenBSD kernels. Their
system works on a more ad-hoc basis, effectively and
efficiently combining programmer written compiler ex-
tensions with statistical techniques.

Static analysis and whole system simulation both
have significant strengths and can be used in a comple-
mentary fashion. Both also present a variety of practical
trade-offs. Static analysis can examine all paths in a pro-
gram. As it need not execute every path in the program
to glean information about its properties, this allows it
to avoid an exponential “blow up” in possible execution
paths. This can be achieved through a variety of means,
most commonly by making the analysis insensitive to
control flow. On the other hand, simulation is basically
program testing with a very good view of the action. As
such, it examines only execution paths that are exercised.

Static analysis is typically performed at the source
code level, thus all code is required to perform the anal-
ysis, and the analysis typically cannot span multiple pro-
grams. Further, most but not all static analysis tools re-
quire some program annotation to function. Whole sys-
tem simulation can be easily used to perform analysis of
properties that span the entire software stack and can be

essentially language independent. Possession of source
code is not even required for an analysis to include a
component, although it is helpful for interpreting results.

One clear advantage of dynamic analysis in general
is that it actually allows the program to be run to deter-
mine its properties. Because many program properties
are formally undecidable they cannot be discovered via
static analysis alone. Also, because lower level analysis
works at the architectural level, it makes no assumptions
about the correctness of implementations of higher level
semantics. Thus, higher level bugs or misfeatures (such
as a compiler optimizing awaymemset() as described
in section 2) are not overlooked.

6 Future Work

Many questions remain to be answered about data
lifetime. There is no current empirical work on how
long data persists in different memory region types
(e.g. stack, heap, etc.) under different workloads. As dis-
cussed in Appendix A allocation policies are quite com-
plicated and vary widely, making it difficult to deduce
their impact from first principles. This problem also
holds for virtual memory subsystems. While our frame-
work identifies potential weaknesses well, we would like
a more complete solution for gaining quantitative infor-
mation about data lifetime in the long term (over hours,
and even days) under different workloads both in mem-
ory and on persistent storage.

One direction for similar inquiries might be to exam-
ine data lifetime with a more accurate simulation, such
as one that would reflect the physical characteristics of
the underlying devices̀a la work by Gutmann [11, 12].

Another area for future work is improving our sim-
ulation platform. Speed is a fundamental limitation
of TaintBochs’ current incarnation because of the fine-
grained tainting and detailed logging that it does. Taint-
Bochs can run as much as 2 to 10 times slower than
Bochs itself. The enormity of the logging done by Taint-
Bochs also presents a problem for our postmortem anal-
ysis tools, since it can easily take minutes or hours to
replay a memory log to an interesting point in time.

We have several ideas for optimizing our system. By
reducing the volume of data we log, or simply doing
away with our dependency on logging altogether, we
could vastly improve TaintBochs overheads. The whole-
system logging technique used in ReVirt [9], for exam-
ple, only had a 0-8% performance cost.

Reduced logging overhead also opens up the pos-
sibility of moving TaintBochs functionality onto faster
whole-system simulation environments like those dis-
cussed in section 5. The right trade-offs could allow us
to do TaintBochs-like analysis in production scenarios.



7 Conclusion

Minimizing data lifetime greatly decreases the
chances of sensitive data exposure. The need for min-
imizing the lifetime of sensitive data is supported by a
significant body of literature and experience, as is the
recognition of how difficult it can be in practice.

We explored how whole system simulation can pro-
vide a practical solution to the problem of understanding
data lifetime in very large and complex software systems
through the use of hardware level taint analysis.

We demonstrated the effectiveness of this solution by
implementing a whole system simulation environment
called TaintBochs and applying it to analyze sensitive
data lifetime in a variety of large real world applications.

We used TaintBochs to study sensitive data lifetime
in real world systems by examining password handing
in Mozilla, Apache, Perl, and Emacs. We found that
these systems and the components that they rely on han-
dle data carelessly, resulting in sensitive data being prop-
agated widely across memory with no provisions made
to purge it. This is especially disturbing given the huge
volume of sensitive data handled by these applications
on a daily basis. We further demonstrated that a few
practical changes could drastically reduce the amount of
long lived sensitive data in these systems.
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A Data Lifetime by Memory Region Type

Most data in software can be classified in terms of
its allocation discipline as static, dynamic, or stack data.
Allocation and release of each kind of data occurs in a
different way: static data is allocated at compile and link
time, dynamic data is allocated explicitly at runtime, and
stack data is allocated and released at runtime accord-
ing to an implicit stack discipline. Similarly, taints in
each kind of data are likely to persist for different lengths
of time according to its allocation class. The allocators
used in various operating systems vary greatly, so the de-
tails will vary from one system to another. To show the
complexity of determining when freed memory is likely
to be reallocated, we describe the reallocation behavior
of Linux and the GNU C library typically used on it:

• Static data.Static data persists at least as long as the
process itself. How much longer depends on the op-
erating system and the system’s activity level. The
Linux kernel in particular takes a very “lazy” ap-
proach to clearing pages. As with most kernels, pages
are not zeroed when they are freed, but unlike some
others (such as Windows NT [25] and descendants)
pages are not zeroed in a background thread either.
Pages are not zeroed when memory is requested by
a process, either. Only when a process first tries to
access an allocated page will Linux actually allocate
and zero a physical page for its use. Therefore, under
Linux static data persists after a process’s termination
as long as it takes the kernel to reassign its page to
another process. (Pages reclaimed from user process
may also be allocated by the kernel for its own use,
but in that case they may not be zeroed immediately
or even upon first write.)

When allocation and zeroing does become neces-
sary, the Linux kernel’s “buddy allocator” for pages
is biased toward returning recently freed pages. How-
ever, its actual behavior is difficult to predict, because
it depends on the system’s memory allocation pattern.
When single free pages are coalesced into larger free
blocks by the buddy allocator, they are less likely
to be returned by new allocation requests for single
pages. They are correspondingly more likely to be
returned for multi-page allocations of the proper size,
but those are far rarer than single-page allocations.
• Dynamic data. Dynamic data only needs to per-

sist until it is freed, but it often survives signifi-
cantly longer. Few dynamic memory allocators clear
memory when it is freed; neither the Linux kernel
dynamic memory allocator (kmalloc() ) nor the
glibc 2.x dynamic memory allocator (malloc() )
zeroes freed (or reallocated) memory. The question
then becomes how soon the memory is reassigned on
a new allocation. This is of course system-dependent.

In the case of Linux, the answer differs between the
kernel and user-level memory allocators, so we treat
those separately.

The Linux kernel “slab” memory allocator draws
each allocation from one of several “pools” of fixed-
size blocks. Some commonly allocated types, such
as file structures, have their own dedicated pools;
memory for other types is drawn from generic pools
chosen based on the allocation size. Within each
pool, memory is allocated in LIFO order, that is, the
most recently freed block is always the first one to be
reused for the next allocation.

The GNU C library, version 2.x , uses Doug Lea’s
implementation ofmalloc() [17], which also pools
blocks based on size. However, its behavior is far
more complex. When small blocks (less than 512
bytes each) are freed, they will be reused if allo-
cations of identical size are requested immediately.
However, any allocation of a large block (512 bytes
or larger) causes freed small blocks to be coalesced
into larger blocks where possible. Otherwise, allo-
cation happens largely on a “best fit” basis. Ties are
broken on a FIFO basis, that is,lessrecently freed
blocks are preferred. In short, it is difficult to predict
when any given free block will be reused. Dynamic
data that is never freed behaves in a manner essen-
tially equivalent to static data.

• Stack data.Data on a process’s stack changes con-
stantly as functions are called and return. As a result,
an actively executing program should tend to clear
out data in its stack fairly quickly. There are some im-
portant exceptions. Many programs have some kind
of “main loop” below which they descend rarely, of-
ten only to terminate execution. Data on the stack
below that point tends to remain for long periods.
Second, some programs occasionally allocate large
amounts of stack space e.g. for input or output buffers
(see 4.1.2). Such data may only be fully cleared out
by later calls to the same routine, because other rou-
tines are unlikely to grow the stack to the point that
much of the buffer is cleared. If data read into large
buffers on the stack is sensitive, then it may be long-
lived. Data that remains on the stack at program ter-
mination behaves the same way as static data.

Most of the accounts above only describe when memory
tends to reallocated, not when it is cleared. These are not
the same because in most cases, reallocated memory is
not necessarily cleared by its new owner. Memory used
as an input or output buffer or as a circular queue may
only be cleared as it is used and perhaps not at all (by
this owner) if it is larger than necessary. Padding bytes
in C structures, inserted by the programmer manually or
the compiler automatically, may not be cleared either.


