Understanding Data Lifetime via Whole System Simulation

Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, Mendel Rosenblum
{jchow,blp,talg,kchristo,mendg®cs.stanford.edu
Stanford University Department of Computer Science

Abstract Unfortunately, even simple questions about data life-

Strictly limiting the lifetime (i.e. propagation and duration time can be Surprlsmgly difficult to answer in rea! Sys-
of exposure) of sensitive data (e.g. passwords) is an imporzems' The same da.ta IS oﬂgn ha_ndled by mgny different
tant and well accepted practice in secure software developCOmponents, including device drivers, operating system,
ment. Unfortunately, there are no current methods availableSystem libraries, programming language runtimes, ap-
for easily analyzing data lifetime, and very little information plications, etc., in the course of a single transaction. This
available on the quality of today’s software with respect to datalimits the applicability of traditional static and dynamic
lifetime. program analysis techniques, as they are typically lim-

We describe a system we have developed for analyzing seited in scope to a single program, often require program

sitive data lifetime through whole system simulation calledgoyrce code, and generally cannot deal with more than
TaintBochs. TaintBochs tracks sensitive data by “tainting” it one implementation language

at the hardwar.e level. Tainting information is the_n p_ropagated To overcome these limitations we have developed
across operating system, language, and application bound-

aries, permitting analysis of sensitive data handling atawholea tool bas_ed on whole-system simulation Ca.”ed Taint-
system level. Bochs, which allows us to track the propagation of sen-
We have used TaintBochs to analyze sensitive data handlina't've data at hardV\{gre level, enablln.g us to examlrle
in several large, real world applications. Among these WereaII places 'that §en5|tlve data can reside. We examine
Mozilla, Apache, and Perl, which are used to process miIIionsSyStemS with TaintBochs by running the entire software

of passwords, credit card numbers, etc. on a daily basis. OU|_StaCk' including operating system, application code, efc.

investigation reveals that these applications and the compolSide @ simulated environment. Every byte of system

nents they rely upon take virtually no measures to limit the life-MEMOTY, device state, and relevant processor state is

time of sensitive data they handle, leaving passwords and othetr"’lgged with a taint-status flag. Data is "tainted” if it is

sensitive data scattered throughout user and kernel memor;)?"ons'_dered sensitive. . .
We show how a few simple and practical changes can greatly Ta'ntB_OChS prop_agates taint flagg Whenev_er their cor-
reduce sensitive data lifetime in these applications. responding values in hardware are involved in an opera-

tion. Thus, tainted data is tracked throughout the system
1 Introduction as it flows thrgugh kernel device driyer;, u'se'r—level GUI
widgets, application buffers, etc. Tainting is introduced
Examining sensitive data lifetime can lend valuablewhen sensitive data enters the system, such as when a
insight into the security of software systems. Whenpassword is read from the keyboard device, an applica-
studying data lifetime we are concerned with two pri- tion reads a particular data set, etc.
mary issues: how long a software component (e.g. oper- We applied TaintBochs to analyzing the lifetime
ating system, library, application) keeps data it is pro-of password information in a variety of large, real-
cessing alive (i.e. in an accessible form in memoryworld applications, including Mozilla, Apache, Perl, and
or persistent storage) and where components propagatamacs on the Linux platform. Our analysis revealed that
data (e.g. buffers, log files, other components). these applications, the kernel, and the libraries that they
As data lifetime increases so does the likelihood ofrelied upon generally took no steps to reduce data life-
exposure to an attacker. Exposure can occur by wagime. Buffers containing sensitive data were deallocated
of an attacker gaining access to system memory or tavithout being cleared of their contents, leaving sensi-
persistent storage (e.g. swap space) to which data hdive data to sit on the heap indefinitely. Sensitive data
leaked. Careless data handling also increases the riskas leftin cleartext in memory for indeterminate periods
of data exposure via interaction with features such asvithout good reason, and unnecessary replication caused
logging, command histories, session management, cragtxcessive copies of password material to be scattered alll
dumps or crash reporting [6], interactive error reporting,over the heap. In the case of Emacs our analysis also
etc. uncovered an interaction between the keyboard history

mechanism and shell mode which caused passwords toieled work on encrypted swap [21] and encrypted file
be placed into the keyboard history in the clear. systems [4] which can greatly reduce the impact of sen-
On a positive note our analysis revealed that sim-sitive data leaks to disk. Unfortunately, these measures
ple modifications could yield significant improvements. have seen fairly limited deployment.
For example, adding a small amount of additional code Identifying long-lived data is not so obviously useful
to clear buffers in the string class destructor in Mozilla as, say, detecting remotely exploitable buffer overflows.
greatly reduced the amount of sensitive input form datdt is a more subtle issue of ensuring that principles of
(e.g. CGI password data) in the heap without a noticeconservative design have been followed to minimize the
able impact on either code complexity or performance. impact of a compromise and decrease the risk of harmful
Our exposition proceeds as follows. In section 2 wefeature interactions. The principles that underly our mo-
present the motivation for our work, discussing why datativation are: first, minimize available privilege (i.e. sen-
lifetime is important to security, why minimizing data sitive data access) throughout the lifetime of a program;
lifetime is challenging, and how whole system simula- second, defense in depth, e.g. avoid relying solely on
tion can help. Section 3 describes the design of Taintmeasures such as encrypted swap to keep sensitive data
Bochs, its policy for propagating taint information and off disk.
the rationale behind it, its support for introducing and While awareness of data lifetime issues runs high
logging taints, and our analysis framework. Section 4among the designers and implementers of cryptographic
describes our experiments on Mozilla, Apache, Perl, andoftware, awareness is low outside of this community.
Emacs, analyzes the results, and describes a few sinThis should be a significant point for concern. As our
ple changes we made to greatly reduced the quantity ofvork with Mozilla in particular demonstrates, even pro-
long-lived tainted data in programs we examined. Secgrams that should know better are entirely careless with
tion 5 covers related work. Section 6 describes oursensitive data. Perhaps one explanation for this phe-
thoughts about future work in this area. Finally, sec-nomenon is that if data is not explicitly identified as, for

tion 7 concludes. example, a cryptographic key, it receives no special han-
dling. Given that most software has been designed this
2 Motivation way, and that this software is being used for a wide range

of sensitive applications, it is important to have an easy
This section examines why data lifetime is important, means of identifying which data is sensitive, and in need
how this issue has been overlooked in many of today’sf special handling.
systems, why it is so difficult to ensure minimal data
lifetime, and how TaintBochs can help ameliorate thes

problems %inimizing Data Lifetime isHard The many factors

which affect data lifetime make building secure systems
a daunting task. Even systems which strive to handle
Threat Model or Why Worry about Data Lifetime? data carefully are often foiled by a variety of factors
The longer sensitive data resides in memory, the greatencluding programmer error and weaknesses in compo-
the risk of exposure. A long running process can easilynents they rely upon. This difficulty underscores the
accumulate a great deal of sensitive data in its heap sinmeed for tools to aid examining systems for errors.
ply by failing to take appropriate steps to clear that mem- Common measures taken to protect sensitive data in-
ory beforefree() ing it. A skillful attacker observing clude zeroing out memory containing key material as
such a weakness could easily recover this informatiorsoon as that data is no longer needed (e.g. through the
from a compromised system simply by combing an ap-C memset() function) and storing sensitive material
plication’s heap. More importantly, the longer data re-on pages which have been pinned in memory (e.g. via
mains in memory the greater its chances of being leakethe UNIX mmap() or mlock() system calls), to keep
to disk by swapping, hibernation, a virtual machine be-them off of persistent storage. These measures can and
ing suspended, a core dump, etc. have failed in a variety of ways, from poor interactions
Basic measures for limiting the lifetime of sensitive between system components with differing assumptions
data including password and key material and keepingbout data lifetime to simple programmer error.
it off persistent storage have become a standard part of A very recent example is provided by Howard [14]
secure software engineering texts [29] and related literwho noted thainemset() alone is ineffective for clear-
ature [13, 28]. Extensive work has been done to gaugéng out memory with any level of optimization turned on
the difficulty of purging data from magnetic media once in Borland, Microsoft, and GNU compilers. The prob-
it has been leaked there [11], and even issues of petem is that buffers which are beingemset() to clear
sistence in solid state storage have been examined [12fheir contents are effectively “dead” already, i.e. they
Concern about sensitive data being leaked to disk hawill never be read again, thus the compiler marks this

code as redundant and removes it. When this problerhandling of sensitive data. This makes building systems
was revealed it was found that a great deal of softwarewhich are conservative about sensitive data handling ex-
including a variety of cryptographic libraries written by tremely difficult.

experienced programmers, had failed to take adequate
measures .t(.) addresg this. ‘Now that this problem ha§\lhole System Simulation can Help TaintBoch's ap-
been identified, multiple ad-hoc ways to work around

: ’ roach of tracking sensitive data of interest via whole
this problem have been developed; however, none o . L2 . .
. . . system simulation is an attractive platform for tackling
them is entirely straightforward or foolproof.

. 2 ; : this problem. It is practical, relatively simple to imple-
Sometimes explicitly clearing memory is not even b P y P P

.) ment (given a simulator), and possesses several unique
possible. If a program unexpectedly halts without clear- (©) P q

. o . Properties that make it particularly well suited to exam-
ing out sensitive data, operating systems make no guat-.. e
.{nlng data lifetime.

antees about when memory will be cleared, other than i . , . : .
. : . TaintBochs’s whole system view allows interactions
will happen before the memory is allocated again. Thus .
between components to be analyzed, and the location of

e o 10 e 468 sensiu da o be casly dentfie. Shor of s o
N ' ! proach, this is a surprisingly difficult problem to solve.
buffers, and keyboard input buffers, are all outside OfSimpIy grep ing for a sensitive string to see if it is
prol\%z;nor?yerlggkr;ggl'can fail for a wide range of rea- pres_entin system memorywillyigld Iimited useful infor-
sons. Some are as simple as memory locking functionmatlon.' In the course of traversing dlfferent programs,
that brovide misleading functionality. For example aaata will t_Je t.ransform.e-d through a variety of encodmgs
. . = ~and application specific data formats that make naive
pair of poorly documgnted memoryllockmg functions in identification largely impossible. For example, in sec-
Zﬂ?ﬁi%ﬁﬁ&ﬂzg (;N IndOW;r,ens?rmsgt:c?\l/li_soocrsobu t this tion 4 we find that a password passing from keyboard to
' ' screen is alternately represented as keyboard scan codes,

has bee_n a p0|_nt of notable confusion [13]. plain ASCII, and X11 scan codes. It is buffered as a set
OS hibernation features do not respect memory lock- :
f single-character strings, and elements in a variety of

ing guarantees. If programs have anticipated the nee Lircular queues.

they can u_sually request notification before the system Because TaintBochs tracks data at an architectural
hibernates; however, most programs do not. . :
level, it does not require source code for the components

Virtual machine monitors such as VMware Worksta- . : o
tion and ESX [30] have limited knowledge of the mem- that an analysis traverses (although this does aid inter-
g retation). Because analysis is done at an architectural

ory management po“.C'eS .Of their guest QSes. .Mam&vel, it makes no assumptions about the correctness of
VMM features, including virtual memory (i.e. paging),

: . 2 ' impl i f higher level ics. Thus, high
suspending to disk, migration, etc., can write any and al mplementations of higher level semantics us, Nig

- . evel bugs or misfeatures (such as a compiler optimizing
state of a guest operating system to persistent storage I
awaymemset()) are not overlooked.

a manner completely transparent to the guest OS and its Comparison of a whole system simulation approach

applications. This undermines any efforts l_)y the gue.SQMth other techniques is discussed further in the related
to keep memory off of storage such as locking pages in .

. : work, section 5.
memory or encrypting the swap file.

In addition to these system level complications, un- . . .
expected interactions between features within or acros3 TaintBochs Design and Implementation

applications can expose sensitive data. Features such TaintBochs is our tool for measuring data lifetime.

as logging, command histories, session managemenk; jis heart is a hardware simulator that runs the entire
crash dump$/ crash fepo”‘”g: interactive error rep,ort'ngsoftware stack being analyzed. This software stack is re-
etc. can easily expose sensitive data to COmpromise. — ¢o e tg as thguest systenfraintBochs is based on the

_ Systems are made of many components that applicg;pen_sqyrce 1A-32 simulator Bochs v2.0.2 [5]. Bochs

tion designers did not develop and whose intermnals theyiet i 5 fyl featured hardware emulator that can emu-

have little a priori knowledge of. Further, poor handling late a variety of different CPUs (386, 486, or Pentium)

of sensitive data is pervasive. While a few specializedand /0 devices (IDE disks, Ethernet card, video card,
security applications and libraries are quite conservativ%ound card, etc.) and can run unmodifi@ operating

about their data handling, most applications, Ianguag(:éystems including Linux and Windows.

runtimes, libraries and operating system are not. As we Bochs is asimulator meaning that guest code never

discuss later in Section 4, even the most common COM: ns directly on the underlying processor—it is merely

ponen:]s SL_‘Ch aks MOTi”a’ A;I)ac_:hel, Perl,lland Emre]lcrs] "?mﬁlnerpreted, turning guest hardware instructions into ap-
even the Linux kernel are relatively profligate with their propriate actions in the simulation software. This per-

mits incredible control, allowing us to augment the ar- If any bit in a byte is tainted, the entire byte is consid-
chitecture with taint propagation, extend the instructionered tainted. Maintaining taint status at a byte granular-
set, etc. ity is a conservative approximation, i.e. we do not ever
We have augmented Bochs with three capabilities tdose track of sensitive data, although some data may be
produce TaintBochs. First, we provide the ability to unnecessarily tainted. Bit granularity would take mini-
track the propagation of sensitive data through the sysmal additional effort, but we have not yet encountered a
tem at a hardware level, i.e. tainting. Second, we haveituation where this would noticeably aid our analysis.
added logging capabilities that allow system state such For simplicity, TaintBochs only maintains shadow
as memory and registers at any given time during a sysmemory for the guest’s main memory and the 1A-32’s
tem’s execution history to be examined. Finally, we de-eight general-purpose registers. Debug registers, con-
veloped an analysis framework that allows informationtrol registers, SIMD (e.g. MMX, SSE) registers, and
about OS internals, debug information for the softwareflags are disregarded, as is chip set and I/O device state.
that is running, etc. to be utilized in an integrated fashionAdding the necessary tracking for other processor or
to allow easy interpretation of tainting information. This 1/O device state (e.g. disk, frame buffer) would be quite
allows us to trace tainted data to an exact program varistraightforward, but the current implementation is suffi-
able in an application (or the kernel) in the guest, andcient for many kinds of useful analysis. We are not ter-
code propagating tainting to an exact source file and lingibly concerned about the guest’s ability to launder taint
number. bits through the processor’s debug registers, for exam-
Our basic usage model consists of two phases. Firsple, as our assumption is that software under analysis is
we run a simulation in which sensitive data (e.g. com-not intentionally malicious.
ing from the keyboard, network, etc.) is identified as
tainted. The workload consists of normal user interac-

tion, e.g. Iogging.into ayvebsite \./iaabrowser..lnthe Sec'Propagation Policy We must decide how operations
ond phase, the simulation data is analyzed with the anaky, 1o sy stem should affect shadow state. If two registers
ysis framework. This allows us to answer open-endedy 54 B are added, and one of them is tainted, is the

queries about the s_|mulat|on, such as_where tainted datt%gisterwhere the result are stored also tainted? We refer
came from, where it was stored, how it was propagatedy, ‘e collective set of policies that decide this as the

etc. i . looki he imol) ¢ propagation policy
We Wlh befgln b,y ooKing a'tf't € 1mp emﬁntqtlonl 0 In the trivial case where data is simply copied, we
TaintBochs, focusing on modifications to the simu atorperform the same operation in the address space of

to facilitate tainting, logging, etc. We will then move shadow memory. So, if the assignmetit— B exe-
on to examine the analysis framework and how it can becutes on normal meméry theh — B is also executed

used with other tools to gain a complete picture of data, \ shadow memory. ConsequentlyBivas tainted then

lifetime in a system. A is now also tainted, and 8 was not taintedA is now
3.1 Hardware Level Tainting also no longer tainted.
. i) The answer is less straightforward when an instruc-
There are two central issues to implementing hardyion produces a new value based on a set of inputs. In
ware level tainting: first, tracking the location of sensi- ;- cases, our simulator must decide on whether and
tive state in the system, and, second, deciding how oy 1g taint the instruction’s output(s). Our choices
evolve that state over time to keep a consistent picture of, st halance the desire to preserve any possibly interest-
which state is sensitive. We will examine each of thesepg taints against the need to minimize spurious reports,
ISsues in turn. i.e. avoid tainting too much data or uninteresting data.
This roughly corresponds to the false negatives vs. false
Shadow Memory To track the location of sensitive positives trade-offs made in other taint analysis tools. As
data in TaintBochs, we added another memory, set ofe will see, it is in general impossible to achieve the lat-
registers, etc. called shadow memoty The shadow ter goal perfectly, so some compromises must be made.
memory tracks taint status of every byte in the system. Processor instructions typically produce outputs that
Every operation performed on machine state by the proare some function of their inputs. Our basic propaga-
cessor or devices causes a parallel operation to be petion policy is simply thaif any byte of any input value is
formed in shadow memory, e.g. copying a word from tainted, then all bytes of the output are taintddhis pol-
register A to location B causes the state in the shadovicy is clearlyconservativeand errs on the side of taint-
register A to be copied to shadow location B. Thus toing too much. Interestingly though, with the exception
determine if a byte is tainted we need only look in the of cases noted below, we have not yet encountered any
corresponding location in shadow memory. obviously spurious output resulting from our policy.

Propagation Problems There are a number of quite
common situations where the basic propagation policy
presented before either fails to taint interesting informa-
tion, or taints more than strictly necessary. We have dis-
covered the following so far:

e Lookup Tables Sometimes tainted values are used
by instructions as indexes into non-tainted memory
(i.e. as an index into a lookup table). Since the tainted
valueitself is not used in the final computation, only
the lookup value it points to, the propagation pol-
icy presented earlier would not classify the output as
tainted.

This situation arises routinely. For example, Linux
routinely remaps keyboard device data through a
lookup table before sending keystrokes to user pro-
grams. Thus, user programs never directly see the
data read in from the keyboard device, only the non-
tainted values they index in the kernel's key remap-
ping table.

Clearly this is not what we want, so we aug-
mented our propagation policy to handle tainted in-
dexes (i.e. tainted pointers) with the following rule:
if any byte of any input value that is involved in the
address computation of a source memory operand is
tainted, then the output is tainted, regardless of the
taint status of the memory operand that is referenced
Constant Functions Tainted values are sometimes
used in computations that always produce the same
result. We call such computationenstant functions ®
An example of such a computation might be the fa-
miliar 1A-32 idiom for clearing out a registerxor
eax, eax . After execution of this instructiorgax
always holds valu®, regardless of its original value.

For our purposes, the output of constant functions
never pose a security risk, even with tainted inputs,
since the input values are not derivable from the out-
put. In thexor example above, it is no less the sit-
uation as if the programmer had instead writteov
eax, 0 .Inthexor case, our naive propagation pol-
icy taints the output, and in thmov case, our prop-
agation policy does not taint the output (since imme-
diate inputs are never considered tainted).

Clearly, our desire is to never taint the output of
constant functions. And while this can clearly be
done for special cases lik@r eax, eax or sim-
ilar sequences liksub eax, eax , this cannot be
done in general since the general case (of which the
xor andsub examples are merely degenerate mem-
bers) is an arbitrary sequence of instructions that ul-
timately compute a constant function. For example,
assumingeax is initially tainted, the sequence:

; ebx = eax
;. ebx = 2 * eax

mov ebx, eax
add ebx, ebx

2 * eax

shl eax, 1
Xor ebx, eax

;. eax
. ebx

1
o

Always computes (albeit circuitously) zero febx,
regardless of the original value ebx. By the time

the instruction simulation reaches tker , it has no
knowledge of whether its operands have the same
value because of some deterministic computation or
through simple chance; it must decide, therefore, to
taint its output.

One might imagine a variety of schemes to address
this problem. Our approach takes advantage of the
semantics of tainted values. For our research, we are
interested in tainted data representing secrets like a
user-typed password. Therefore, we simply define by
fiat that we are only interested in taints on non-zero
values. As aresult, any operation that produces a zero
output value never taints its output, since zero outputs
are, by definition, uninteresting.

This simple heuristic has the consequence that
constant functions producing nonzero values can still
be tainted. This has not been a problem in practice
since constant functions themselves are fairly rare,
except for the degenerate ones that clear out a reg-
ister. Moreover, tainted inputs find their way into a
constant function even more rarely, because tainted
memory generally represents a fairly small fraction
of the guest’s overall memory.

One-way FunctionsConstant functions are an inter-
esting special case of a more general class of compu-
tations we callbne-way functionsA one-way func-
tion is characterized by the fact that its input is not
easily derived from its output. The problem with one-
way functions is that tainted input values generally
produce tainted outputs, just as they did for constant
functions. But since the output value gives no prac-
tical information about the computation’s inputs, it
is generally uninteresting to flag such data as tainted
from the viewpoint of analyzing information leaks,
since no practical security risk exists.

A concrete example of this situation occurs in
Linux, where keyboard input is used as a source of
entropy for the kernel’'s random pool. Data collected
into the random pool is passed through various mix-
ing functions, which include cryptographic hashes
like SHA-1. Although derivatives of the original key-
board input are used by the kernel when it extracts
entropy from the pool, no practical information can
be gleaned about the original keyboard input from
looking at the random number outputs (at least, not
easily).

Our system does not currently try to remove
tainted outputs resulting from one-way functions,
since instances of such taints are few and easily iden-

tifiable. Moreover, such taints are often useful for

identifying the spread of tainted data, for example,

the hash of a password is often used as a crypto-
graphic key.

Evading Tainting While the propagation policy de-
fined above works well for us in practice, data can be

propagated in a manner that evades tainting. For exam-

ple, the following C code,

f (=0 y =0
else if (x == 1)y = 1,
else if (x == 255) y = 255; .

effectively copiex toy, but since TaintBochs does not
taint comparison flags or the output of instructions that
follow a control flow decision based on them, the asso-
ciated taint forx does not propagate ta Interestingly,
the Windows 2000 kernel illustrates this problem when
translating keyboard scancodes into unicode.

Another possible attack comes from the fact that
TaintBochs never considers instruction immediates to be
tainted. A guest could take advantage of this by dynami-
cally generating code with proper immediate values that
constructs a copy of a string.

Because such attacks do exist, TaintBochs can never

prove the absence of errors; we don’t expect to use it
against actively malicious guests. Instead, TaintBochs is
primarily focused on being a testing and analysis tool for
finding errors.

Taint Sources TaintBochs supports a variety of meth-
ods for introducing taints:

e Devices /O devices present an excellent opportu-
nity to inject taints into the guest, since they represent
the earliest point of the system at which data can be
introduced. This is a crucial point, since we are in-

terested in the way a whole system handles sensitive
data, even the kernel and its device drivers. Taint-3

Bochs currently supports tainting of data at the key-
board and network devices. Support for other devices
is currently under developmeht.

Tainting data at the Ethernet card is a slightly more
complicated process. We do not want to simply taint
entire Ethernet packets, because Ethernet headers,
TCP/IP headers, and most application data are of lit-
tle interest to us. To address this we provide the net-
work card with one or more patterns before we begin
a simulation. TaintBochs scans Ethernet frames for
these patterns, and if it finds a match, taints the bytes
that match the pattern. These taints are propagated to
memory as the frame is read from the card. Although
this technique can miss data that should be tainted
(e.g. when a string is split between two TCP packets)
it has proved sufficient for our needs so far.
Application-specific Tainting at the 1/0 device level
has as its chief benefit the fact that it undercuts all
software in the system, even the kernel. However
this approach has limitations. Consider, for exam-
ple, the situation where one wants to track the life-
time and reach of a user’s password as it is sent over
the network to an SSH daemon. As part of the SSH
exchange, the user’s password is encrypted before be-
ing sent over the network, thus our normal approach
of pattern matching is at best far more labor intensive,
and less precise than we would like.

Our current solution to this situation, and others
like it, is to allow theapplicationto decide what is
interesting or not. Specifically, we added an instruc-
tion to our simulated 1A-32 environment to allow the
guest to taint datataint eax . Using this we can
modify the SSH daemon to taint the user’s password
as soon as it is first processed. By pushing the taint
decision-making up to the application level, we can
skirt the thorny issue that stopped us before by taint-
ing the password after it has been decrypted by the
SSH server. This approach has the unfortunate prop-
erty of being invasive, in that it requires modification
of guest code. It also fails to taint encrypted data in
kernel and user buffers, but such data is less interest-
ing because the session key is also needed to recover
sensitive data.

.2 Whole-System Logging

TaintBochs must provide some mechanism for an-

swering the key questions necessary to understand taint

Keyboard tainting simply taints bytes as they arepropagation:wWho has tainted data? How did they get
read from the simulated keyboard controller. We useit? andWhen did that happen?t achieves this through
this feature, for example, to taint a user-typed passwhole-system logging

word inside a web browser (see section 4.1.1 for de-

Whole system logging records sufficient data at simu-

tails). This features is essentially binary: keyboardlation time to reconstitute a fairly complete image of the
tainting is either on or off. state of a guest at any given point in the simulation. This

derway. With this addition we hope to more completely understand

will be complete before publication.

is achieved by recording all changes to interesting sys-
tem state, e.g. memory and registers, from the system'’s
when data is leaked to disk and its lifetime there. We anticipate this'mt'"flI startup state. By combining this information with
the initial system image we can “play” the log forward

1Support for disk tainting and frame buffer tainting is currently un-

to give us the state of the system at any point in time. guest at any point in time in the simulation usigdb.
Ideally, we would like to log all changes to state, This allows us to answer any questions about tainting

since we can then recreate a perfect image of the guesitat we may not have been able to glean by reading the

at a given instant. However, logging requires storage foisource code.

the log and has runtime overhead from logging. Thus,

operations which are logged are limited to those necesfraveling In Time The first capability our analysis
sary to meet two requirements. First we need to be abl@amework integrates is the ability to scroll back and
to recreate guest memory and its associated taint statygrth to any time in the programs execution history. This
at any instruction boundary to provide a complete pic-a|lows the causal relationship between different tainted
ture of what was tainted. Second, we would like to havememory regions to be established, i.e. it allows us to
enough register state available to generate a ubafik- \yatch taints propagate from one region of memory to the
trace to allow deeper inspection of code which causednext. This capability is critical as the sources of taints
tainting. become untainted over time, preventing one from under-
To provide this information the log includes writes to standing what path data has taken through the system
memory, changes to memory taint state, and changes %mply by looking at a single point.
the stack pointer register (ESP) and frame pointer reg- We have currently implemented this capability
ister (EBP). Each log entry includes the address (EIP}hrough a tool calledreplay which can generate a
of the instruction that triggered the log entry, plus the complete and accurate image of a simulated machine at
instruction count, which is the number of instructions any instruction boundary. It does this by starting from
executed by the virtual CPU since it was initialized. a snapshot and rep|aying the memory |Og It also out-
To assemble a complete picture of system state Taintpyts the physical addresses of all tainted memory bytes
Bochs dumps a full snapshot of system memory to diskand provides the values of EBP and ESP, exactly, and
each time logging is started or restarted. This ensureg|p, as of the last logged operation. EBP and ESP make
that memory contents are fully known at the log’s start,packtraces possible and EIP is identifies the line of code
allowing subsequent memory states to be reconstructeghat caused tainting (e.g. copied tainted datajplay
by combining the log and the initial snapshot. is a useful primitive, but it still presents us with only raw
Logging of this kind is expensive: at its peak, it pro- machine state. To determine what program or what part

duces about 500 MB/minute raw log data on our 2.4¢f the kernel owns tainted data or what code caused it to
GHz P4 machines, which reduces about 70% when W e tainted we re|y on another tool calledaints

addgzip compression to the logging code. To further

reduce log size, we made it possible for the TaintBOChSidentifying Data A second capability of the analysis

user to disable logging when it IS unneeded (,e-@,l- dl_mngframework is matching raw taint data with source-level
boot or between tests). Even with these optimizations g iies in user code, currently implemented through a

logging is still slow and space-consuming. We discusSq| cajledx-taints , our primary tool for interpret-

these overheads further in section 6. ing tainting information. It combines information from
3.3 Analysis Framework a variety of sources to produce a file name and line num-
ber where a tainted variable was defined.

Taint data provided by TaintBochs is available only x-taints identifies static kernel data by referring
at the hardware level. To interpret this data in terms ofto System.map , a file produced during kernel compi-
higher level semantics, e.g. at a C code level, hardwaréation that lists each kernel symbol and its address. Mi-
level state must be considered in conjunction with ad-crosoft distributes similar symbol sets for Windows, and
ditional information about software running on the ma- we are working towards integrating their use into our
chine. This task is performed by the analysis frameworkanalysis tools as well.

The analysis framework provides us with three major x-taints identifies kernel heap allocated data us-
capabilities. First, it answers the question of which datang a patch we created for Linux guests that appends
is tainted by giving the file name and line number wheresource file and line number information to each re-
a tainted variable is defined. Second, it provides a lisigion allocated by the kernel dynamic memory alloca-
of locations and times identifying the code (by file nametor kmalloc() . To implement this we added extra
and line number) which caused a taint to propagate. Byytes to the end of every allocated region to store this
browsing through this list the causal chain of operationsdata. When run against a patched kernel, this allows
that resulted in taint propagation can be unraveled. Thix-taints to display such information in its analysis
can be walked through in a text editor in a fashion sim-reports.
ilar to a list of compiler errors. Finally, it provides the x-taints identifies data in user space in several
ability to inspect any program that was running in thesteps. Firstx-taints generates a table that maps

physical addresses to virtual addresses for each procesa.place, our next task was to examine the scope of the
We do this using a custom extension to Mission Criti- data lifetime in common applications.

cal’'scrash , software for creating and analyzing Linux In applying TaintBochs we concerned ourselves with

kernel crash dumps. This table allows us to identify thethree primary issues:

process or processes that own the tainted data. Once

x-taints establishes which process owns the data ite Scope Where was sensitive data was being copied to
is interested inx-taints turns to a second custom in memory.

crash extension to obtain more information. This ex- ¢ Duration. How long did that data persist?

tension extracts a core file for the process from the phys# Implications Beyond the mere presence of problems,

ical memory image on diskx-taints appliesgdb we wanted to discover how easy they would be to
to the program’s binary and the core file and obtains the solve, and what the implications were for implement-
name of the tainted variable. ing systems to minimize data lifetime.

For analysis of user-level programs to be effective, . .))
the user must have previously copied the program’s pi-There is no simple answer to any of these questions in
nary, with debugging symbols, out of the simulated ma-the systems we analyzed. Data was propagated all over

chine into a location known ta-taints . For best the software stack, potential lifetimes varied widely, and
results the simulated machine’s libraries and their deWhile & wide range of data lifetime problems could be
bugging symbols should also be available. solved with small changes to program structure, there

was no single silver bullet. The one constant that did
hold was that careful handling of sensitive data was al-
most universally absent.

We performed three experiments in total, all of them
examining the handling of password data in a different
contexts. Our first experiment examined Mozilla [27],

Studying Code Propagating Taints The final capa-

bility that the analysis framework provides is the ability
to identify which code propagated taints, e.qg. if a call to
memcpy copies tainted data, then its caller, along with

a full backtrace, can be identified by their source fllea popular open source web browser. Our second ex-

hames and Imgnumbersh_ b lavi | periment tests Apache [1], by some reports the most
x-taints Iscovers this by replaying a memory log popular server in the world, running a simple CGlI ap-

and tracking, for every byte of physical memory, the PID jication written in Perl. We believe these first two

of the program that last modified it, the virtual address Ofexperiments are of particular interest as these plat-
the instruction that last modified it (EIP), and theinstruc-formS process millions of sensitive transactions on a
tion count at which it was modifie8l. Using this data, daily basis. Finally, our third experiment examines

x-taints .consults eltheSystem.map ora gener- sNy Emacs [26], the well-known text-editor-turned-
gted core file and re.po.rts the function, source file, anq)perating-system, used by many as their primary means
line number of the tainting code. _ _ of interaction with UNIX systems.

x-taints can also bring ugdb to allow investiga- In section 4.1 we describe the design of each of our

tion of the state of any program in the simulation at any e, neriments and report where in the software stack we
instruction boundary. Most of the debugger's featuresfound tainted data. In section 4.2 we analyze our re-

can be used, including full backtraces, inspecting local 15 in more detail, explaining the lifetime implications

and global variables, and so on. If the process was rung¢ each |ocation where sensitive data resided (e.g. 1/0
ning at the time of the core dump, then register varlable%uﬁerS’ string buffers). In section 4.3 we report the re-

in the top stack frame will be inaccurate because Onlysults of experiments in modifying the software we pre-
EBP and ESP are recorded in the log file. For processe\ﬁously examined to reduce data lifetime

that are not running, the entire register set is accurately _
extracted from where it is saved in the kernel stack. 4.1 Experimental Results

. e L .) 4.1.1 Mozilla
4 Exploring Data Lifetime with Taint-

Bochs In our first experiment we tracked a user-input password

in Mozilla during the login phase of the Yahoo Mail
Our objective in developing TaintBochs was to pro- website.
vide a platform to explore the data lifetime problem in Mozilla was a particularly interesting subject not only
depth in real systems. With our experimental platformbecause of its real world impact, but also because its
size. Mozilla is a massive application-8.7 million

EIP, instead of PID plus virtual address. This unnecessarily compli-(?Ines of COde) written by many different people, it also

cated identifying the process responsible when a shared library funchas a huge number_Of dependencies on other compo-
tion (e.g.memmove tainted memory. nents (e.g. GUI toolkits).

2An earlier version recorded the physical address corresponding t

Given its complexity, Mozilla provided an excellent 4.1.2 Apache and Perl
test of TaintBoch’s ability to make a large application
comprehensible. TaintBochs passed with flying colors
One of us was able to analyze Mozilla in roughly a day.
We consider this quite acceptable given the size of thé
data set being analyzed, and that none of us had priotre

familiarity with its code base. o
4 put a form with fields for user name, password, and a

For our experiment, we began by a booting a Lihux . ,
guestinside TaintBochs. We then logged in as an unpriv-Sme't button that posted to the same form. Perl's CGl

ileged user, and started X with them window man- module automatically parses the field data passed to it
ager. Insidla X, we started Mozilla and brought up theby the browser, but the script ignores it. This CGI script
webpagemail yz;lhoo com where we entered a user represents the minimum amount of tainting produced by

name and password in the login form. Before enterin perl's CGI module as any CGI script that read and used

the password, we turned on TaintBoch's keyboard tain?_the password would almost certainly create extra copies

ing, and afterward we turned it back off. We then closedmc Ilt. thi _ t th b client _ tsid
Mozilla, logged out, and closed TaintBochs. n this expenment, the web client, Tunning outside

When we analyzed the tainted regions after Ivlozi”aTalntBochs, connected to the Apache server running in-

was closed, we found that many parts of the system fai§ide. TaintBochs examined each Ethernet frame as it en-

to respect the lifetime sensitivity of the password datatered the guest, and tainted any instance of a hard-coded

: : . . password found in the frame. This technique would not
they handle. The tainted regions included the foIIowmg.have found the password had it been encoded, split be-

tween frames, or encrypted, but it sufficed for our simple

e Kernel random number generatorThe Linux ker- ~ €xperiment. _ .
nel has a subsystem that generates cryptographically Using Apache version 1.3.29 and Perl version 5.8.2,
secure random numbers, by gathering and mixing enWe tracked the following sequence of taints as we sub-
tropy from a number of sources, including the key- Mitted the login form and discovered that the taints listed
board. It stores keyboard input temporarily in a cir- below persist after the request was fully handled by
cular queue for later batch processing. It also useg\Pache and the CGI program:
a global variabldast _scancode to keep track of K | ket buff | functi
the previous key press; the keyboard driver also has a nerme packe utiers n unction
similar variableprev _scancode . ne_block _input , the L|n_ux kernel reads the

o XFree86 event queudhe X server stores user-input Eg\gge:n{(r)arze JL%E tgjn:rrr:iﬁlllly izllgggt;det\:/\/vci)trrln(
events, including keystrokes, in a circular queue for .

g xey g kmalloc . The frame is attached to ak _buff

later dispatch to X clients. truct qf work kets. A found
e Kernel socket buffersIn our experiment, X relays S .rtl;]cuur.e sse for ni tor_ t;?]acMe S.'” s we ourt1
keystrokes to Mozilla and its other clients over Unix Wi nix domain Sockets in the Mozifla experiment,
domain sockets using theritev system call. Each the kernel does not zero these bytes when they are
call causes the kernel to allocatesle_buff socket freed, and it is difficult to predict how soon they will
B be reused.
structure to hold the data. .
e Mozilla strings Mozilla, written in C++, uses a num- * Apach(i .'m:ﬁt buftf)erglzj/h?n A?achtehresds ﬂ:e HT.TP
ber of related string classes to process user data. It request in thap bread function, the kernel copies
it from its packet buffer into a buffer dynamically

makes no attempt to curb the lifetime of sensitive . ;
P allocated by Apache. The data is then copied to

In our second experiment, we ran Apache inside Taint-
Bochs, setting it up to grant access to a CGI script writ-
en in Perl. We tracked the lifetime of a password en-
red via a simple form and passed to a trivial CGI script.
Our CGl scriptinitialized Perl’'s CGl module and out-

data. ! . .
e Kernel tty buffers When the user types keyboard a _sta;]ck (;/larlabIeB by the_t(_:GI r?r?du[{e Il?tLunICtlc?n
characters, they go into struct tty _struct gl -handler . because It1S on the stack, the latter

buffer is reused for each CGI request made to a given

Apache process, so it is likely to be erased quickly

except on very low-volume web servers.

Apache output bufferApache copies the request to a

dynamically allocated output buffer before sending it

to the CGil child process.

e Kernel pipe buffer Apache flushes its output buffer
to the Perl CGI subprocess through a pipe, so tainted

3We conducted our experiment on a Gentoo [10] Linux guestwith ~ data i.S c_opied into a kernel pipe buffer. o
a2.4.23 kernel. The guest used XFree86 v4.3.0r3 and Mozillav1.5-r1.e Perl file input buffer Perl reads from the pipe into a

“flip buffer” directly from interrupt context. (A flip
buffer is divided into halves, one used only for read-
ing and the other used only for writing. When data
that has been written must be read, the halves aré
“flipped” around.) The key codes are then copied into
a tty, which X reads.

dynamically allocated file buffer, 4 kB in size. The prompt had appeared in the Emacs buffer. The results

buffer is associated with the file handle and will not identified several tainted regions in Emacs and the ker-

be erased as long as the file is open and no additionaiel:

I/O is done. Because Apache typically sends much

less than 4 kB of data through the pipe, the read buffer® <€melrandom number generator and keyboard data

persists at least as long as the CGI process. See the_Moana experiment (section 4.1.1) for more
e Perl string buffers Perl copies data from the input ~ Information. .

buffer into a Perl string, also dynamically allocated. ® Clobal variable kbd _buffer . All Emacs input

Furthermore, in the process of parsing, the tainted Passes through this buffer, arranged as a circular

bytes are copied into a second Perl string. queue. Each buffer eleme_nt is only erased after ap-

proximately 4,096 further input “events” (keyboard

All of these buffers contain the full password in cleart- or mouse activities) have occurred.

ext. e Data referenced by global variablecent _keys .
This variable keeps track of the user's last 100
4.1.3 Emacs keystrokes.

Each character in the password, as a 1-character
Lisp string Lisp functioncomint-read-noecho
accumulates the password string by converting each
character to a 1-character string, then concatenating
those strings. These strings are unreferenced and will
eventually be recycled by the garbage collector, al-
though when they will be erased is unpredictable (see
appendix A for further discussion).

The entire password as a Lisp stringfhe password

is not cleared after it is sent to the subprocess. This
string is also unreferenced.

e Stack Emacs implements Lisp function calls in terms
of C function calls, so the password remains on the
process stack until it is overwritten by a later function
call that uses as much stack.

Three kernel buffersWhen the user types keyboard
characters, they go into struct tty _struct

“flip buffer” directly from interrupt context. The key
codes are then copied into a tty that Emacs reads, and
then into a second tty when Emacs passes the pass-
word to its shell subprocess.

In our third experiment we tracked the lifetime of a pass- *
word entered inteu by way of Emacs’s shell mode.

At its core GNU Emacs is a text editor. Because it
is built on top of a specialized Lisp interpreter, modern
versions can do much more than edit text. Indeed, many
users prefer to do most of their work within Emacs.

Many of the functions Emacs performs may in-
volved handling sensitive data, for example, activities .
that might prompt for passwords include interacting with
shells, browsing web pages, reading and sending email
and newsgroup articles, editing remote files g&h ,
and assorted cryptographic functionality.

We chose Emacs’ “shell mode” for our first inves-
tigation. In shell mode, an Emacs buffer becomes an
interface to a Unix shell, such d&sh, running as an .
Emacs subprocess. Emacs displays shell output in the
buffer and passes user input in the buffer to the shell.
Emacs does not implement most terminal commands in
the shell buffer, including commands for disabling lo-
cal echo, so passwords typed in response to prompts by
ssh, su, etc. would normally echo. As a workaround,
shell mode includes a specialized facility that recognizesrthe password typed can be recovered from any of these
password prompts and reads them without echo in a sepainted regions. The tainted strings are of particular
arate “minibuffer.” We decided to investigate how thor- interest: the Emacs garbage collector, as a side effect
oughly Emacs cleared these passwords from its memoryf collecting unreferenced strings, will erase the first 4
after passing them to the subprocess. bytes (8 bytes, on 64-bit architectures) of a string. Thus,

To start the experiment, we booted a guest runningseveral of the taints above would have shrunk or dis-
the Debian GNU/Linux “unstable” distribution, logged appeared entirely had we continued to use Emacs long
in as an unprivileged user, and started Emacs. Withirenough for the garbage collector to be invoked.

Emacs, we started shell mode and enteredstheom- Finally, as part of our investigation, we dis-
mand at the shell promptUsing the TaintBochs inter- covered that entering a special Emacs command
face, we enabled tainting of keyboard input, typed the(view-lossage) soon after typing the password
root password, and then disabled keyboard input taintwould actually reveal it on-screen in plaintext form.
ing. Finally, we closed the shell sessions, exited EmacsThis behavior is actually documented in the Emacs de-
logged off, and shut down TaintBochs. veloper documentation foromint-read-noecho

Using the generated memory and taint logs, we raiyhich simply notes that “some people find this wor-

a taint analysis at a point soon after the subshell's rysome [sic].” Because this piece of advice is not in
4Given the superuser's passwot opens a subshell with supe- the€ Emacs manual, a typical Emacs user would never
ruser privileges. see it. The same developer documentation also says that,

“Once the caller uses the password, it can erase the pas®r an attacker to discover keys typed, since keystrokes

word by doing(fillarray STRING 0) . whichis areleftin the queue even after they have been consumed.

untrue, as we can see from the above list of taints. We can significantly reduce data lifetime in each of
the cases encountered simply by zeroing input after it

4.1.4 Windows 2000 Workloads has been consumed. In section 4.3, we describe applica-

) _ - tion of such a fix to Emacs.
To illustrate the generality of data lifetime problems, our

fourth experiment consisted of two workloads running
on Windows 2000. 4.2.2 /O Buffers

We first examined the process of logging into a Win- Buffers are more transient and thus tend to be allocated

dOV.VS 2000 ma’chme. By tamtmg "eyb,o.af‘? mpu? Wh'le on the heap or, occasionally, the stack. Buffers are some-
typing the user's password at Windows’ initial login d'a'_ times created for use in only a single context, as with the

log, we found at Ieast_ two occurrences of the pa.sswo_rd N ase of kernel network buffers. In other cases, they sur-

memory after the Iogm process was completed: ata'.”‘e ive as long as an associated object, as in the case of
scancode representation and a unicode representatlon.kernel pipe buffers and some Apache input buffers,

O,:” second 'moli/lrlor.:l”d mwrgrs the web Iotgln ixi)eln- Our experiments encountered many kinds of tainted
Imetr;] we rakr: W:j oz adoT tlnuxt(Eeelsec '%no) Id). input and output buffer data. In the Mozilla experiment,
n this workioad, we used Tnternet EXpIorer 5.9 Under o t4nd tainted tty buffers and Unix domain socket
Windows 2000. We again found a tainted scancode réPpffers: in the Apache and Perl experiment, we found

rese ntation of the password sitting in memory after thetainted kernel network buffers, Apache input and output
login process was complete. . . buffers, kernel pipe buffers, and Perl file input buffers.

. We have forgone further_ a’?a'ys's asa !ack of_appllca- There is no simple bound on the amount of time be-
ion and OS5 source code_ limited our ab|_I|ty to dlagnosefore freed buffer data will be reallocated and erased.
the czgsg of taints and discem how easily they could b%ven if an allocator always prefers to reuse the most re-
remedied. cently freed block for new allocations (“LIFO”), some
4.2 Analysis of Results patterns of allocate and free operations, such as a few

This section discusses the results found in the previ—extra free operations in a sequence that tends to keep

ous sections and discusses the data lifetime implicationg]e same amount of memory allocated, can cause sensi-

of each major class of tainting result found. For a more! /€ 'data to Ilnger.for excessive amounts OT time. Doug
Lea’smalloc() implementation, used iglibc 2Xx

in-depth discussion of the data lifetime implications of d elsewh wallv has f lex behavi
different storage classes (e.g. stack, heap, dynamicall nd elsewnere, actually ?S ar :nore complex behavior
at actually tends toward “FIFO” behavior in some cir-

llocated vs. b llected), th der should .)
gpcp))((::rl]gix XS garbage collected), the reader shou Se‘cumstances (see Appendix A for more details). Heap

fragmentation can also extend sensitive data lifetime.
We can solve the problem of sensitive data in 1/O
buffers by zeroing them when they are no longer needed.
Circular queues of events are common in software. CirBecause relatively large 1/O buffers of 4 kB or more are
cular queue data structures are usually long-lived and ofoften allocated even for a few bytes, only space in the
ten even statically allocated. Data in a circular queugduffer that was actually filled with data should be ze-
survives only as long as it takes the queue to wrag©oed.
around, although that may be a long time in a large or
inactive queue. 423 Strings
Our experiments uncovered three queues that handle
tainted data: the Linux kernel random number generatofainted strings appeared in the results of all three of our
batch processing queue (described in more detail in se@xperiments: in Mozilla, C++ string classes; in Perl, Perl
tion 4.2.4 below), XFree86's event queue, and Emacsstrings; in Emacs, Lisp strings.
event queue. String data tends to be allocated on the heap or, occa-
In each case we encountered, tainted data was storegionally, the stack. Strings are often used in operations
in plaintext form while it awaited processing. More im- that copy data, such as concatenation or substring op-
portantly, in each case, after inputs were consumed, thegrations. This can lead their contents to be replicated
were simply left on the queue until they were eventu-widely in the heap and the stack.
ally overwritten when the queue head wrapped around. This type of replication was especially prevalent in
Because each queue processes keyboard input, these félce cases we encountered because of the high-level na-
tors present a non-deterministic window of opportunity ture of the string representations used. In each case, the

4.2.1 Circular Queues

NS _IMETHODIMP
nsTextControlFrame::CheckFireOnChange()

{

nsString value;
GetText(&value);
/ldifferent fire onchange
if (ImFocusedValue.Equals(value))
{
mFocusedValue = value;
FireOnChange();

}
return NS_OK;

keystrokes from holding down a key are not used as
a source of randomness. This variable holds only one
keystroke and is overwritten on subsequent key press,
thus it is a source of limited concern.

Second, to avoid doing expensive hash calcula-
tions in interrupt context, the RNG stores plain-
text keystrokes into a 256-entry circular queue
batch _entropy _pool and processes them later in a
batch. The same queue is used for batching other sources
of randomness, so the length of the window of opportu-
nity to recover data from this queue depends heavily on

} workload, data lifetime could vary from seconds to min-
utes on a reasonably loaded system to hours or even days
Figure 1: In this example Mozilla needlessly —On asystem left suspended or hibernated.
replicates sensitive string data in the heap. Third, the RNG’s entropy pools are tainted. These
nsString’s constructor allocates heap space and are of little concern, because data is added to the pools
GetText(&value) taints that data. This extra ©nly via “mixing functions” that would be difficult or
copy is unnecessary merely to do a comparison. impossible for an attacker to invert.
4.3 Treating the Taints

programmer need not be aware of memory allocatiorf-3-1 Mozilla

and copying. Indeed, Perl and Emacs Lisp provide nQ\iozilla makes no attempt to reduce lifetime of sensi-

obvious way to determine that string data has been reakye form data, however, simple remedies exist which
located and copied. Normally this is a convenience, bugan help significantly.

for managing the lifetime of sensitive data itis a hazard. Fjrst, uses ofnsString ~ for local variables (as

We discovered that this problem is especially vexingjp, Figure 1) can be replaced with variables of type
in Mozilla, because there are many easy pitfalls that CasAutoString , a string class that derives buffer
end up making heap copies of strings. Figure 1 illus-space from the same storage class as the string itself,
trates this situatiop with a snippet of code from Mozilla thys, data in stack based storage will not be propagated
that ends up making a heap copy of a string just to dqq the heap. This practice is actually recommended by
a string comparisonngString is a string class that \ozilla coding guidelines, so the example code snippet
allocates storage from the heap). This needlessly putg, Figure 1 ought to have incorporated this change.
another copy of the string on the heap and could have one often legitimately needs to have a heap-allocated
been accomplished through a variety of other means asyring e.g. in string members of a dynamically allocated
fundamentally string comparison does not require anyopject. Therefore, to reduce data lifetime in this case
additional allocation. classes should zero out their contents when they are de-

Because, like buffer data, tainted strings tend to oCstroyed. This trivial change to the string class’s destruc-
cupy heap or stack space, the considerations discussegy significantly reduces the lifetime of sensitive data,
in the previous section for determining how long freed yitnout inducing any perceptible change in program per-
data will take to be cleared also apply to string data. Infgrmance.
practice the pattern of lifetimes is likely to differ, be- g evaluate the impact of this approach we added ze-
cause buffers are typically fixed in size whereas stringsoing to string destructors in Mozilla, and reran our ex-
vary widely. periments. We found this small change was very suc-
cessful in reducing both the amount of tainted data and
its lifetime. With this patch, the amount of tainted data in
Mozilla’'s address space reduced in half, and taints from
In both the Mozilla and Emacs experiments we discov-destroyed string objects were completely eliminated.
ered tainted data in the Linux kernel associated with Figure 2 illustrates this point by showing the amount
its cryptographically secure random number generatoof tainted string data in Mozilla’s address space as a
(RNG). The source of this tainting was keyboard inputfunction of time (as measured in tens of millions of in-
which is used as a source of randomness. The locatiorstructions elapsed since the start of tainting). The spike
tainted fell into three categories. in both runs marks when the user has submitted the

First, the RNG keeps track of the user’s last keystrokeweb form containing their password. During this time,
in static variablelast _scancode so that repeated Mozilla does considerable processing on the password:

4.2.4 Linux Random Number Generator

forcing garbage collection after entering the password.
This had the desired effect: all of the tainted, unrefer-
®Original enced Lisp strings were erased, as were all of the tainted
D Modified input buffer elements. We concluded that relatively sim-
ple changes to Emacs can have a significant impact on
the lifetime of sensitive data entrusted to it.

5 Related Work

Previous work on whole system simulation for ana-
lyzing software has largely focused on studying perfor-
‘ ‘ ‘ ‘ | mance and providing a test bed for new hardware fea-

0 50 100 150 200 250 tures. Extensive work on the design of whole system

time simulators including performance, extensibility, inter-

pretation of hardware level data in terms of higher level

semantics, etc. was explored in SImOS [22].

Dynamic binary translators which operate at the sin-
Figure 2: A comparison of the amount of tainted gle process level instead of the whole system level have

string data in the original Mozilla versus our modi- demonstrated significant power for doing dynamic anal-
fied version. Our zero-on-free string remedy reduces ysis of software [8]. These systems work as assembly-
tainted string data by half in the steady state. to-assembly translators, dynamically instrumenting bi-

naries as they are executed, rather than as complete sim-
o)) ulators. For example, Valgrind [19] has been widely
it is touched by GUI widgets, HTML form handling geployed in the Linux community and provides a wide
code, and even the browser’s JavaScript engine. range of functionality including memory error detection
String data is progressively deallocated by Mozilla as(y la Purify [15]), data race detection, cache profiling,
it finishes the form submission process and begins loadatc. Somewhere between an full simulator and binary
ing the next page. As Figure 2 shows, the amount ofransjator is Hobbes [7], a single proca8$ interpreter
tainted data is reduced by roughly half once Mozilla hitSihat can detect memory errors and perform runtime type
a steady state. The difference between the original a”@hecking. Hobbes and Valgrind both provide frame-
modified runs is entirely accounted for by garbage heagyqrks for writing new dynamic analysis tools.
data from Mozilla’s various string classes. Dynamo [3] is an extremely fast binary translator,
The baseline of tainted data bytes in the modified rungiin to an optimizing JIT compiler intended to be run
is accounted for by explicithar* copies made from during program deployment. It has been used to per-
;tring cIa_sses. This means that our patch entire_ly elimsorm dynamic checks to enhance security at runtime by
inated tainted data resulting from destroyed string obetecting deviations from normal execution patterns de-
jects in our experiment, and highlighted the places whergjye(via static analysis. This technique has been called
Mozilla made dangerous expli@har* string copies. program shepherding [16]. It is particularly interesting
in that it combines static analysis with dynamic check-
4.3.2 Emacs Ing. ,
These systems have a narrower scope than Taint-
As with Mozilla, we modified Emacs to reduce the num- Bochs as they operate on a single program level, but they
ber of long-lived tainted regions. We made two changeffer significant performance advantages. That said, bi-
to its C source code, each of which inserted only a singlenary translators that can operate at the whole system
call to memset. First, we modifiecclear _event ,a level with very high efficiency have been demonstrated
function called to clear input events as they are removedh research [31] and commercial [18] settings. The tech-
from the input queue. The existing code only set eventshiques demonstrated in TaintBochs could certainly be
type codes tmo _event , so we added a line to zero the applied in these settings.
remainder of the data. The term “tainting” has traditionally referred to tag-
Second, we modifiedweep _strings , called by ging data to denote that the data comes from an untrusted
the garbage collector to collect unreferenced stringssource. Potential vulnerabilities are then discovered by
The existing code zeroed the first 4 bytes (8 bytes, ordetermining whether tainted data ever reaches a sensitive
64-bit architectures) of strings as a side effect. We modsink. This of course differs from our use of taint infor-
ified it to zero all bytes of unreferenced strings. mation, but the fundamental mechanism is the same. A
We reran the experiment with these modifications,tainted tag may be literally be a bit associated with data,

as in systems like TaintBochs or Perl’s tainting or mayessentially language independent. Possession of source

simply be an intuitive metaphor for understanding thecode is not even required for an analysis to include a

results of a static analysis. component, although it is helpful for interpreting results.
Perl [20] provides the most well known example One clear advantage of dynamic analysis in general

of tainting. In Perl, if “tainting” is enabled, data is that it actually allows the program to be run to deter-

read by built-in functions from potentially untrusted mine its properties. Because many program properties

sources, i.e. network sockets, environment variables, etare formally undecidable they cannot be discovered via

is tagged as tainted. Regular expression matching cleatatic analysis alone. Also, because lower level analysis

taint bits and is taken to mean that the programmer is hasorks at the architectural level, it makes no assumptions

checked that the input is “safe.” Sensitive built-in func- about the correctness of implementations of higher level

tions (e.g.exec) will generate a runtime error if they semantics. Thus, higher level bugs or misfeatures (such

receive tainted arguments. as a compiler optimizing awayjemset() as described
Static taint analysis has been applied by a varietyin section 2) are not overlooked.

of groups with significant success. Shankar et al. [24]

used their static analysis tool Percent-S to detect format

string vulnerabilities based on a tainting style analysis6 Future Work

using type qualifier inference and programmer annota-

t@ons. Scrash [6], infers which data'in asyster.n. is sensi- Many questions remain to be answered about data
tlye baseq on programmer annotations to facilitate SP€ffetime. There is no current empirical work on how
cial handling of that data to allow secure crash dumps'Ong data persists in different memory region types

I.€. crash dumps which can be shipped to the applicatiorae_g_ stack, heap, etc.) under different workloads. As dis-
developer without revealing users sensitive data. Thi%ussed in Appendix A allocation policies are quite com-
work is probably the most similar to ours in spirit as its plicated and vary widely, making it difficult to deduce
focus is on making a feature with significant impact on i, impact from first principles. This problem also
sensitive data lifetime safe. The heart of both of theseholds for virtual memory subsystems. While our frame-
systems is the CQual [23], a powerful system for Sup~yqy identifies potential weaknesses well, we would like
porting user extensible type mferencg. L a more complete solution for gaining quantitative infor-
Ashcraft etal. [2] successfully applied a tainting style p44i0n about data lifetime in the long term (over hours,

static anquss in the context of their meta-compilation 4 aven days) under different workloads both in mem-
system with extremely notable success. In the contex&ry and on persistent storage

of this work they were able to discover a large number “q gjrection for similar inquiries might be to exam-
of new bugs in the Linux and OpenBSD kernels. Theirine yata lifetime with a more accurate simulation, such

SV?'t?m works on a more ad-hoc ba_sis, effectiyely an%s one that would reflect the physical characteristics of
efficiently combining programmer written compiler ex- the underlying device la work by Gutmann [11, 12].

ten5|on_s with f@“suc‘zl te;h:uques. imulation both Another area for future work is improving our sim-
Static analysis and whole system simulation both,4tion platform. Speed is a fundamental limitation

have S'gn'f'cha.m strenhgtr;s and can be used in a complés; rintgochs’ current incarnation because of the fine-
mentary fas on. Bot aiso presentgvanety of PraCt'Cabrained tainting and detailed logging that it does. Taint-
trade-offs. Static analysis can examine all paths in a prog hs can run as much as 2 to 10 times slower than

gram. As it need not execute every path in the prograng, s jtself. The enormity of the logging done by Taint-
to glean information about its properties, this allows it Bochs also presents a problem for our postmortem anal-

to avoid an exponential “blow up” in possible eXecu"'m%/sis tools, since it can easily take minutes or hours to
paths. This can be achieved through a variety of mean eplay a memory log to an interesting point in time.

most commonly by making the analysis insensitive to We have several ideas for optimizing our system. By
control flow. On the other hand, simulation is basically reducing the volume of data we log, or simply doing
program testing with a very good view of the action. As away with our dependency on logging altogether, we

such, it examines only execution paths that are exercise%.owd vastly improve TaintBochs overheads. The whole-

Static analysis is typically performed at the sourceSystem logging technique used in ReVirt [9], for exam-

code level, thus all code is required to perform the anal—p|e’ only had a 0-8% performance cost.

ysis, and the analysis typically cannot span multiple pro- Reduced logging overhead also opens up the pos-

grams. Further, most but not all static analysis tools ré;yijin of moving TaintBochs functionality onto faster

quire some program annotation to function. Whole sysyq1e_system simulation environments like those dis-
tem simulation can be easily used to perform analysis of,ge in section 5. The right trade-offs could allow us

properties that span the entire software stack and can % do TaintBochs-like analysis in production scenarios.

7 Conclusion 9]

Minimizing data lifetime greatly decreases the
chances of sensitive data exposure. The need for min-
imizing the lifetime of sensitive data is supported by a[10]
significant body of literature and experience, as is thdll]
recognition of how difficult it can be in practice.

We explored how whole system simulation can pro—[12]
vide a practical solution to the problem of understanding
data lifetime in very large and complex software systemstls]
through the use of hardware level taint analysis.

We demonstrated the effectiveness of this solution by
implementing a whole system simulation environment[14]
called TaintBochs and applying it to analyze sensitive
data lifetime in a variety of large real world applications.

We used TaintBochs to study sensitive data lifetime 15]
in real world systems by examining password handing
in Mozilla, Apache, Perl, and Emacs. We found that[16]
these systems and the components that they rely on han-
dle data carelessly, resulting in sensitive data being prop-
agated widely across memory with no provisions madg!’]
to purge it. This is especially disturbing given the huge
volume of sensitive data handled by these applicationgs]
on a daily basis. We further demonstrated that a few
practical changes could drastically reduce the amount of
long lived sensitive data in these systems. [19]

8 Acknowledgments

This work was supported in part by the National Sci- 20]

ence Foundation under Grant No. 0121481 and a StarEl]
ford Graduate Fellowship.

[22]
References

[1] Apache Software Foundation. The Apache HTTP Server project.
http://httpd.apache.org 23]

[2] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes.IEEE Symposium on Secu-
rity and Privacy May 2002. [24]

[3] V.Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization systenACM SIGPLAN Notices85(5):1—

12, 2000. [25]

[4] M. Blaze. A cryptographic file system for UNIX. IACM Con-
ference on Computer and Communications Segpiges 9-16, [26]
1993.

[5] Bochs: The cross platform IA-32 emulatdittp://bochs. [27]
sourceforge.net/

[6] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for [28]
generating secure crash information.Aroceedings of the 11th
USENIX Security Symposiuugust 2003.

[7] M. Burrows, S. N. Freund, and J. Wiener. Run-time type check- (29]
ing for binary programsinternational Conference on Compiler
Construction April 2003. [30]

[8] B.Cmelik and D. Keppel. Shade: a fast instruction-set simulator

for execution profiling. IrProceedings of the 1994 ACM SIG- [31]
METRICS conference on Measurement and modeling of com-
puter systemgages 128-137. ACM Press, 1994.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replaglGOPS Operating Systems Review
36(Sl):211-224, 2002.

Gentoo Linux.http://www.gentoo.org

P. Gutmann. Secure deletion of data from magnetic and solid-
state memory. IfProceedings of the 6th USENIX Security Sym-
posium july 1996.

P. Gutmann. Data remanence in semiconductor device2rohn
ceedings of the 7th USENIX Security Symposilan. 1998.

P. Gutmann. Software generation of practically strong random
numbers. InProceedings of the 8th USENIX Security Sympo-
sium August 1999.

M. Howard. Some bad news and some good news.
http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/dncode%/html/

secure10102002.asp , October 2002.

IBM Rational software. IBM Rational Purifyhttp://www.
rational.com

V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure exe-
cution via program shepherding. Proceedings of the 11th
USENIX Security Symposiurugust 2002.

D. Lea. A memory allocator.http:/gee.cs.oswego.
edu/dl/html/malloc.html

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform.IEEE Computer
35(2):50-58, February 2002.

N. Nethercote and J. Seward. Valgrind: A program supervision
framework. In O. Sokolsky and M. Viswanathan, editdggc-
tronic Notes in Theoretical Computer Sciengelume 89. Else-
vier, 2003.

Perl security manual pagehttp://www.perldoc.com/
perl5.6/pod/perlsec.html

N. Provos. Encrypting virtual memory. IRroceedings of the
10th USENIX Security Symposiupages 35-44, August 2000.

M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Com-
plete computer system simulation: The SImOS appro#eRE
Parallel and Distributed Technology: Systems and Applications
3(4):34-43, Winter 1995.

J. S.Type Qualifiers: Lightweight Specifications to Improve Soft-
ware Quality PhD thesis, University of California, Berkeley,
December 2002.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. Froc. 10th
USENIX Security Symposiuugust 2001.

D. A. Solomon and M. RussinovicHnside Microsoft Windows
200Q Microsoft Press, 2000.

R. Stallman et al. GNU Emacgp://ftp.gnu.org/pub/
gnu/emacs .

The Mozilla Organization. Home of the mozilla, firebird, and
camino web browsersttp://www.mozilla.org/

J. Viega. Protecting sensitive data in memoryhttp:
/lwww-106.ibm.com/developerworks/security/
library/s-data.html?dwzo%ne=security

J. Viega and G. McGrawBuilding Secure SoftwareAddison-
Wesley, 2002.

VMware, Inc. VMware virtual machine technologyhttp:
/lwww.vmware.com/

E. Witchel and M. Rosenblum. Embra: Fast and flexible machine
simulation. InMeasurement and Modeling of Computer Systems
pages 68—79, 1996.

A Data Lifetime by Memory Region Type

Most data in software can be classified in terms of
its allocation discipline as static, dynamic, or stack data.
Allocation and release of each kind of data occurs in a
different way: static data is allocated at compile and link
time, dynamic data is allocated explicitly at runtime, and
stack data is allocated and released at runtime accord-
ing to an implicit stack discipline. Similarly, taints in
each kind of data are likely to persist for different lengths
of time according to its allocation class. The allocators
used in various operating systems vary greatly, so the de-
tails will vary from one system to another. To show the
complexity of determining when freed memory is likely
to be reallocated, we describe the reallocation behavior
of Linux and the GNU C library typically used on it:

e Static data.Static data persists at least as long as the
process itself. How much longer depends on the op-
erating system and the system'’s activity level. The
Linux kernel in particular takes a very “lazy” ap-
proach to clearing pages. As with most kernels, pages
are not zeroed when they are freed, but unlike some
others (such as Windows NT [25] and descendants)
pages are not zeroed in a background thread either.
Pages are not zeroed when memory is requested by
a process, either. Only when a process first tries to
access an allocated page will Linux actually allocate
and zero a physical page for its use. Therefore, unde®
Linux static data persists after a process’s termination
as long as it takes the kernel to reassign its page to
another process. (Pages reclaimed from user process
may also be allocated by the kernel for its own use,
but in that case they may not be zeroed immediately
or even upon first write.)

When allocation and zeroing does become neces-
sary, the Linux kernel's “buddy allocator” for pages
is biased toward returning recently freed pages. How-
ever, its actual behavior is difficult to predict, because
it depends on the system’s memory allocation pattern.
When single free pages are coalesced into larger free
blocks by the buddy allocator, they are less likely
to be returned by new allocation requests for single
pages. They are correspondingly more likely to be
returned for multi-page allocations of the proper size,
but those are far rarer than single-page allocations.
Dynamic data. Dynamic data only needs to per-
sist until it is freed, but it often survives signifi-
cantly longer. Few dynamic memory allocators clear
memory when it is freed; neither the Linux kernel
dynamic memory allocatork(nalloc()) nor the
glibc 2x dynamic memory allocatonfalloc())
zeroes freed (or reallocated) memory. The question
then becomes how soon the memory is reassigned o
a new allocation. This is of course system-dependent.

In the case of Linux, the answer differs between the
kernel and user-level memory allocators, so we treat
those separately.

The Linux kernel “slab” memory allocator draws
each allocation from one of several “pools” of fixed-
size blocks. Some commonly allocated types, such
as file structures, have their own dedicated pools;
memory for other types is drawn from generic pools
chosen based on the allocation size. Within each
pool, memory is allocated in LIFO order, that is, the
most recently freed block is always the first one to be
reused for the next allocation.

The GNU C library, version 2, uses Doug Lea’s
implementation ofmalloc() [17], which also pools
blocks based on size. However, its behavior is far
more complex. When small blocks (less than 512
bytes each) are freed, they will be reused if allo-
cations of identical size are requested immediately.
However, any allocation of a large block (512 bytes
or larger) causes freed small blocks to be coalesced
into larger blocks where possible. Otherwise, allo-
cation happens largely on a “best fit” basis. Ties are
broken on a FIFO basis, that iessrecently freed
blocks are preferred. In short, it is difficult to predict
when any given free block will be reused. Dynamic
data that is never freed behaves in a manner essen-
tially equivalent to static data.

Stack data.Data on a process’s stack changes con-
stantly as functions are called and return. As a result,
an actively executing program should tend to clear
out data in its stack fairly quickly. There are some im-
portant exceptions. Many programs have some kind
of “main loop” below which they descend rarely, of-
ten only to terminate execution. Data on the stack
below that point tends to remain for long periods.
Second, some programs occasionally allocate large
amounts of stack space e.g. for input or output buffers
(see 4.1.2). Such data may only be fully cleared out
by later calls to the same routine, because other rou-
tines are unlikely to grow the stack to the point that
much of the buffer is cleared. If data read into large
buffers on the stack is sensitive, then it may be long-
lived. Data that remains on the stack at program ter-
mination behaves the same way as static data.

Most of the accounts above only describe when memory
tends to reallocated, not when itis cleared. These are not
the same because in most cases, reallocated memory is
not necessarily cleared by its new owner. Memory used
as an input or output buffer or as a circular queue may
only be cleared as it is used and perhaps not at all (by
this owner) if it is larger than necessary. Padding bytes
in C structures, inserted by the programmer manually or
he compiler automatically, may not be cleared either.

